Extracellular vesicles (EVs) are emerging as novel theranostic tools. Limitations related to clinical uses are leading to a new research area on design and manufacture of artificial EVs. Several strategies have been reported in order to produce artificial EVs, but there has not yet been a clear criterion by which to differentiate these novel biomaterials. In this paper, we suggest for the first time a systematic classification of the terms used to build up the artificial EV landscape, based on the preparation method. This could be useful to guide the derivation to clinical trial routes and to clarify the literature. According to our classification, we have reviewed the main strategies reported to date for their preparation, including key points such as: cargo loading, surface targeting strategies, purification steps, generation of membrane fragments for the construction of biomimetic materials, preparation of synthetic membranes inspired in EV composition and subsequent surface decoration.
Although the use of oil-in-water (O/W) emulsions as metalworking fluids is widespread, the mechanisms of emulsion lubrication are not yet well understood. Several theories have been proposed but there is not a clear agreement about the effect of different operating conditions and emulsion properties on the lubricating performance of O/W emulsions. In the present study, the film forming ability of O/W emulsions as a function of emulsifier concentration is studied. The emulsifier content exerts a strong influence on all the emulsion properties, such as stability, droplet size distribution, surface and interfacial tension, wetting ability, etc., as well as on the lubricating behaviour, so it has been used to ascertain the relationship between all the properties involved. Three different emulsifiers-anionic, nonionic and cationic-were used at different concentrations in the design of lubricant O/W emulsions. Experimental results show that the work of adhesion of oil droplets on the metal surface is a valuable parameter to predict the ability of emulsions to form thick films in elastohydrodynamic (EHD) contacts. The influence of pH value of O/W emulsions on their lubricating behaviour is also verified. The overall conclusion is that the interactions between metal and oil droplets rule the mechanism of lubrication and that this interaction is primarily controlled by emulsifier concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.