The performance and integration density of silicon integrated circuits (ICs) have progressed at an unprecedented pace in the past 60 years. While silicon ICs thrive at low‐power high‐performance computing, creating flexible and large‐area electronics using silicon remains a challenge. On the other hand, flexible and printed electronics use intrinsically flexible materials and printing techniques to manufacture compliant and large‐area electronics. Nonetheless, flexible electronics are not as efficient as silicon ICs for computation and signal communication. Flexible hybrid electronics (FHE) leverages the strengths of these two dissimilar technologies. It uses flexible and printed electronics where flexibility and scalability are required, i.e., for sensing and actuating, and silicon ICs for computation and communication purposes. Combining flexible electronics and silicon ICs yields a very powerful and versatile technology with a vast range of applications. Here, the fundamental building blocks of an FHE system, printed sensors and circuits, thinned silicon ICs, printed antennas, printed energy harvesting and storage modules, and printed displays, are discussed. Emerging application areas of FHE in wearable health, structural health, industrial, environmental, and agricultural sensing are reviewed. Overall, the recent progress, fabrication, application, and challenges, and an outlook, related to FHE are presented.
Sensor data can be wirelessly transmitted from simple, battery-less tags using Radio Frequency Identification (RFID). RFID sensor tags consist of an antenna, a radio frequency integrated circuit chip (RFIC), and at least one sensor. An ideal tag can communicate over a long distance and be seamlessly integrated onto everyday objects. However, miniaturized antenna designs often have lower performance. Here we demonstrate compact, flexible sensor tags with read range comparable to that of conventional rigid tags. We compare fabrication techniques for flexible antennas and demonstrate that screen and stencil printing are both suitable for fabricating antennas; these different techniques are most useful at different points in the design cycle. We characterize two versions of flexible, screen printed folded dipoles and a meandered monopole operating in the 915 MHz band. Finally, we use these antennas to create passive sensor tags and demonstrate over the air communication of sensor data. These tags could be used to form a network of printed, flexible, passive, interactive sensor tags.
Flexible and biodegradable sensors are advantageous for their versatility in a range of areas from smart packaging to agriculture. In this work, we characterize and compare the performance of interdigitated electrode (IDE) humidity sensors printed on different biodegradable substrates. In these IDE capacitive devices, the substrate acts as the sensing layer. The dielectric constant of the substrate increases as the material absorbs water from the atmosphere. Consequently, the capacitance across the electrodes is a function of environmental relative humidity. Here, the performance of polylactide (PLA), glossy paper, and potato starch as a sensing layer is compared to that of nonbiodegradable polyethylene terephthalate (PET). The capacitance across inkjet-printed silver electrodes is measured in environmental conditions ranging from 15 to 90% relative humidity. The sensitivity, response time, hysteresis, and temperature dependency are compared for the sensors. The relationship between humidity and capacitance across the sensors can be modeled by exponential growth with an R2 value of 0.99, with paper and starch sensors having the highest overall sensitivity. The PET and PLA sensors have response and recovery times under 5 min and limited hysteresis. However, the paper and starch sensors have response and recovery times closer to 20 min, with significant hysteresis around 100%. The PET and starch sensors are temperature independent, while the PLA and paper sensors display thermal drift that increases with temperature.
Printed biodegradable electronics potentially enable the monitoring of various soil parameters at a high spatial density while minimizing cost and waste. A tunable degradable encapsulant is a critical component in a soil-degradable electronic device, as it acts to delay the ingress of water, microbes, and other agents responsible for degradation of underlying functional materials. Here, blends of beeswax and commercial soy wax are presented as tunable biodegradable encapsulant materials for transient soil sensors. Using differential scanning calorimetry, we first show that the blends of the two waxes have limited miscibility, which enables programming of degradation times. Laboratory degradation tests in soil revealed that the longevity of encapsulated devices can be controlled by the ratio of the component soy and beeswax, with up to 100 days with 100% beeswax and less than 10 days with the addition of 25% soy wax by mass. Thicker coatings of 1.6 mm of 10% soy wax in beeswax blends are shown to protect devices for 12 weeks. Additionally, melt-processed beeswax encapsulants are used as a simple method to delay the degradation of otherwise rapidly biodegradable materials, such as wooden stakes, that could be used to house soil-degradable electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.