Biodegradable electronics is a rapidly growing field, and the development of controllably biodegradable, high-conductivity materials suitable for additive manufacturing under ambient conditions remains a challenge. In this report, printable conductive pastes that employ poly(lactic acid) (PLA) as a binder and tungsten as a conductor are demonstrated. These composite conductors can provide enhanced stability in applications where moisture may be present, such as environmental monitoring or agriculture. Post-processing the printed traces using a solvent-aging technique increases their conductivity by up to 2 orders of magnitude, with final conductivities approaching 5000 S/m. Such techniques could prove useful when thermal processes including heating or laser sintering are limited by the temperature constraints of typical biodegradable substrates. Both accelerated oxidative and hydrolytic degradation of the printed composite conductors are examined, and a fully biodegradable capacitive soil moisture sensor is fabricated and tested.
Successful precision agriculture decision making requires characterizing soil heterogeneity at high spatiotemporal resolution in real-time in order to optimize input (such as water and nutrient) amounts and location. In order to achieve this goal, a printed soil moisture sensor fabricated from biodegradable materials is demonstrated. These devices are intended to function during the growing season and then harmlessly degrade afterward, enabling high-density deployment, eliminating the need for sensor retrieval, and enabling the use of simple device structures and low-cost materials and fabrication techniques. A capacitive structure is used with a water-soluble zinc electrode printed onto a biodegradable substrate. Rapidly degrading substrate and electrode are encapsulated in a slowly degrading wax blend that protects the device, reduces drift, and controls degradation time. A linear capacitance response is observed for soil samples with a volumetric water content from 0 to 72%. Accelerated degradation testing demonstrates that the sensor responds predictably and stably until the encapsulation is breached, at which point the sensor fails rapidly, providing a clear distinction between the functional and nonfunctional lifetimes of the sensor. These results demonstrate the potential of biodegradable sensors to allow maintenance-free, affordable, and real-time soil moisture measurement at high spatial density for precision irrigation control.
Inexpensive and no-maintenance biodegradable soil moisture sensors could improve existing knowledge on spatial and temporal variability of available soil water at field-scale. Such sensors can unlock the full potential of variable-rate irrigation (VRI) systems to optimize water applications in irrigated cropping systems. The objectives of this study were to assess (i) the degradation of soil moisture sensor component materials and (ii) the effects of material degradation on maize (Zea mays L.) growth and development. This study was conducted in a greenhouse at Colorado State University, Colorado, USA, by planting maize seeds in pots filled with three growing media (field soil, silica sand, and Promix commercial potting media). The degradation rate of five candidate sensor materials (three blends of beeswax and soy wax, balsa wood, and PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate))) was assessed by harvesting sensor materials at four maize growth stages (30, 60, 90, and 120 days after transplanting). All materials under consideration showed stability in terms of mass and dimension except PHBV. PHBV was degraded entirely within 30 days in soil and Promix, and within 60 days in sand. Balsa wood did now show any significant reduction in mass and dimensions in all growth media. Similarly, there was no significant mass loss across wax blends (p = 0.05) at any growth stage, with a few exceptions. Among the wax blends, 3:1 (beeswax:soy wax) was the most stable blend in terms of mass and dimension with no surface cracks, making it a suitable encapsulant for soil sensor. All materials under consideration did not have any significant effect on maize growth (dry biomass, green biomass, and height) as compared to control plants. These results indicated that 3:1 beeswax:soy wax blend, PHBV, and balsa wood could be suitable candidates for various components of biodegradable soil moisture sensors.
Printed biodegradable electronics potentially enable the monitoring of various soil parameters at a high spatial density while minimizing cost and waste. A tunable degradable encapsulant is a critical component in a soil-degradable electronic device, as it acts to delay the ingress of water, microbes, and other agents responsible for degradation of underlying functional materials. Here, blends of beeswax and commercial soy wax are presented as tunable biodegradable encapsulant materials for transient soil sensors. Using differential scanning calorimetry, we first show that the blends of the two waxes have limited miscibility, which enables programming of degradation times. Laboratory degradation tests in soil revealed that the longevity of encapsulated devices can be controlled by the ratio of the component soy and beeswax, with up to 100 days with 100% beeswax and less than 10 days with the addition of 25% soy wax by mass. Thicker coatings of 1.6 mm of 10% soy wax in beeswax blends are shown to protect devices for 12 weeks. Additionally, melt-processed beeswax encapsulants are used as a simple method to delay the degradation of otherwise rapidly biodegradable materials, such as wooden stakes, that could be used to house soil-degradable electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.