In this investigation, acoustic radiation force was used as a stimulus to determine the threshold for tactile perception in the human finger and upper forearm as a function of frequency and pulse duration. Initially, a small (1.8-cm2) acoustically reflecting disk was affixed to the anatomical exposure site to maximize the delivered radiation force. Exposures were performed using a 2.2-MHz unfocused source modulated to produce square waves at 50, 100, 200, 500, and 1000 Hz. For the finger, maximum tactile sensitivity occurred at 200 Hz with a threshold radiation force of approximately 0.4 mN. For single pulses of 1 to 100 ms at 2.2 MHz, the threshold forces were an order of magnitude greater than for continuous exposure modulated at 200 Hz. Thresholds for pulse durations of 0.1 ms were somewhat greater than for pulses longer than 1 ms. Subsequently, thresholds of tactile perception were determined for direct exposure of the upper forearm (avoiding bone) to single pulses of 2.2-MHz ultrasound. Comparison of perception thresholds with and without a reflecting material over the tissue were consistent with the hypothesis that the tactile sensation experienced when tissue is exposed to ultrasound is its response to the radiation force associated with the transfer of momentum from the sound field to the tissue medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.