Aim:The Hardy-Rand-Rittler (HRR) pseudoisochromatic test for colour vision is highly regarded but has long been out of print. Richmond Products produced a new edition in 2002 that has been re-engineered to rectify shortcomings of the original test. This study is a validation trial of the new test using a larger sample and different criteria of evaluation from those of the previously reported validation study. Methods: The Richmond HRR test was given to 100 consecutively presenting patients with abnormal colour vision and 50 patients with normal colour vision. Colour vision was diagnosed using the Ishihara test, the Farnsworth D15 test, the Medmont C-100 test and the Type 1 Nagel anomaloscope. Results: The Richmond HRR test has a sensitivity of 1.00 and a specificity of 0.975 when the criterion for failing is two or more errors with the screening plates. Sensitivity and specificity become 0.98 and 1.0, respectively, when the fail criterion is three or more errors. Those with red-green colour vision deficiency were correctly classified as protan or deutan on 86 per cent of occasions, with 11 per cent unclassified and three per cent incorrectly classified. All those graded as having a 'mild' defect by the Richmond HRR test passed the Farnsworth D15 test and had an anomaloscope range of 30 or less. Not all dichromats were classified as 'strong', which was one of the goals of the re-engineering and those graded as 'medium' and 'strong' included dichromats and those who have a mild colour vision deficiency based on the results of the Farnsworth D15 test and the anomaloscope range. Conclusions:The test is as good as the Ishihara test for detection of the red-green colour vision deficiencies but unlike the Ishihara, also has plates for the detection of the tritan defects. Its classification of protans and deutans is useful but the Medmont C-100 test is better. Those graded as 'mild' by the Richmond HRR test can be regarded as having a mild colour vision defect but a 'medium' or 'strong' grading needs to be interpreted in conjunction with other tests such as the Farnsworth D15 and the anomaloscope. The Richmond HRR test could be the test of choice for clinicians who wish to use a single test for colour vision.
One of the most common pathogens in infection of hydrogel contact lens wearers is Pseudomonas aeruginosa, which can gain access to the eye via contamination of the lens, lens case, and lens care solutions. Only one strain per species is used in current regulatory testing for the marketing of chemical contact lens disinfectants. The aim of this study was to determine whether P. aeruginosa strains vary in their susceptibility to hydrogel contact lens disinfectants. A method for rapidly screening bacterial susceptibility to contact lens disinfectants was developed, based on measurement of the MIC. The susceptibility of 35 P. aeruginosa isolates to two chemical disinfectants was found to vary among strains. MICs ranged from 6.25 to 100% for both disinfectants at 37°C, and a number of strains were not inhibited by a 100% disinfectant concentration in the lens case environment at room temperature (22°C). Resistance to disinfection appeared to be an inherent rather than acquired trait, since some resistant strains had been isolated prior to the introduction of the disinfectants and some susceptible P. aeruginosa strains could not be made more resistant by repeated disinfectant exposure. A number of P. aeruginosa strains which were comparatively more resistant to short-term disinfectant exposure also demonstrated the ability to grow to levels above the initial inoculum in one chemical disinfectant after long-term (24 to 48 h) disinfectant exposure. Resistance was correlated with acute cytotoxic activity toward corneal epithelial cells and with exsA, which encodes a protein that regulates cytotoxicity via a complex type III secretion system. These results suggest that chemical disinfection solutions may select for contamination with cytotoxic strains. Further investigation of the mechanisms and factors responsible for resistance may also lead to strategies for reducing adverse responses to contact lens wear.
There are various reasons to presume that the unregulated supply of CLs might result in the use of inappropriate lenses, increase the risk of poorer lens hygiene, and militate against the prompt treatment of any consequent complications. There is some indication that the introduction of regulations to control the supply of plano CLs has alleviated the level of complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.