The sediment, water, and three species of fish from 24 of Massachusetts' (relatively) least‐impacted water bodies were sampled to determine the patterns of variation in edible tissue mercury concentrations and the relationships of these patterns to characteristics of the water, sediment, and water bodies (lake, wetland, and watershed areas). Sampling was apportioned among three different ecological subregions and among lakes of differing trophic status. We sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Average muscle mercury concentrations were 0.15 mg/kg wet weight in the bottom‐feeding brown bullheads (Ameiurus nebulosus) (range = 0.01–0.79 mg/kg); 0.31 mg/kg in the omnivorous yellow perch (Perca flavescens) (range = 0.01–0.75 mg/kg); and 0.39 mg/kg in the predaceous largemouth bass (Micropterus salmoides) (range = 0.05–1.1 mg/kg). Statistically significant differences in fish mercury concentrations between ecological subregions in Massachusetts, USA, existed only in yellow perch. The productivity level of the lakes (as deduced from Carlson's Trophic Status Index) was not a strong predictor of tissue mercury concentrations in any species. pH was a highly (inversely) correlated environmental variable with yellow perch and brown bullhead tissue mercury. Largemouth bass tissue mercury concentrations were most highly correlated with the weight of the fish (+), lake size (+), and source area sizes (+). Properties of individual lakes appear more important for determining fish tissue mercury concentrations than do small‐scale ecoregional differences. Species that show major mercury variation with size or trophic level may not be good choices for use in evaluating the importance of environmental variables.
Mercury (Hg) concentrations were monitored from 1999 to 2011 in largemouth bass (LMB) and yellow perch (YP) in 23 lakes in Massachusetts USA during a period of significant local and regional Hg emissions reductions. Average LMB tissue Hg concentration decreases of 44% were seen in 13 of 16 lakes in a regional Hg "hotspot" area. YP in all lakes sampled in this area decreased 43% after the major emissions reductions. Comparative decreases throughout the remainder of the state were 13% and 19% for LMB and YP respectively. Annual tissue mercury concentration rate decreases were 0.029 (LMB) and 0.016 mg Hg/kg/yr (YP) in the hotspot. In lakes around the rest of the state, LMB showed no trend and YP Hg decreased 0.0068 mg Hg/kg/yr. Mercury emissions from major point sources in the hotspot area decreased 98%, and 93% in the rest of the state from the early 1990s to 2008. The significant declines in fish Hg concentrations in many lakes occurred over the second half of a two decade decrease in Hg emissions primarily from municipal solid waste combustors and, secondarily, from other combustion point sources. In addition to the substantial Hg emissions reductions achieved in Massachusetts, further regional, national and global emissions reductions are needed for fish Hg levels to decrease below fish consumption advisory levels.
Abstract-The sediment, water, and three species of fish from 24 of Massachusetts' (relatively) least-impacted water bodies were sampled to determine the patterns of variation in edible tissue mercury concentrations and the relationships of these patterns to characteristics of the water, sediment, and water bodies (lake, wetland, and watershed areas). Sampling was apportioned among three different ecological subregions and among lakes of differing trophic status. We sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Average muscle mercury concentrations were 0.15 mg/kg wet weight in the bottom-feeding brown bullheads (Ameiurus nebulosus) (range ϭ 0.01-0.79 mg/kg); 0.31 mg/kg in the omnivorous yellow perch (Perca flavescens) (range ϭ 0.01-0.75 mg/kg); and 0.39 mg/kg in the predaceous largemouth bass (Micropterus salmoides) (range ϭ 0.05-1
ObjectivePerchlorate inhibits the uptake of iodide in the thyroid. Iodide is required to synthesize hormones critical to fetal and neonatal development. Many water supplies and foods are contaminated with perchlorate. Exposure standards are needed but controversial. Here we summarize the basis of the Massachusetts (MA) perchlorate reference dose (RfD) and drinking water standard (DWS), which are considerably lower and more health protective than related values derived by several other agencies. We also review information regarding perchlorate risk assessment and policy.Data sourcesMA Department of Environmental Protection (DEP) scientists, with input from a science advisory committee, assessed a wide range of perchlorate risk and exposure information. Health outcomes associated with iodine insufficiency were considered, as were data on perchlorate in drinking water disinfectants.Data synthesisWe used a weight-of-the-evidence approach to evaluate perchlorate risks, paying particular attention to sensitive life stages. A health protective RfD (0.07 μg/kg/day) was derived using an uncertainty factor approach with perchlorate-induced iodide uptake inhibition as the point of departure. The MA DWS (2 μg/L) was based on risk management decisions weighing information on perchlorate health risks and its presence in certain disinfectant solutions used to treat drinking water for pathogens.ConclusionsCurrent data indicate that perchlorate exposures attributable to drinking water in individuals at sensitive life stages should be minimized and support the MA DEP perchlorate RfD and DWS. Widespread exposure to perchlorate and other thyroid toxicants in drinking water and foods suggests that more comprehensive policies to reduce overall exposures and enhance iodine nutrition are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.