To evaluate its role in protection, immune serum was collected from four macaques which were chronically infected with live attenuated simian immunodeficiency virus (SIVmacC8) and had resisted challenge with wild-type SIVmacJ5. The immune serum was transferred to two naı$ ve cynomolgus macaques by intraperitoneal injection (11 ml/kg). Four control macaques received an intraperitoneal injection of normal saline. One day later, all macaques were challenged with 10 MID 50 of the J5M challenge stock of SIV. After challenge, all macaques became infected as determined by virus co-culture and diagnostic PCR. Virus loads in PBMC at 2 weeks post-challenge were indistinguishable between the two groups of macaques. Thus, the failure of passive immunization to transfer protection indicates that serum components alone are not sufficient to mediate the potent protection obtained using live attenuated vaccines. This is the first time that serum has been transferred from animals known to be protected against superinfection.
Inactivated, partially purified simian immunodeficiency virus (SIVmac) protected macaques from intravenous challenge with homologous and heterologous strains of SIV that had been grown on human cells but no protection against challenge with monkey peripheral blood mononuclear cell-grown SIVmac was afforded. Human immunodeficiency virus type 1 prepared in an analogous way to the SIVmac vaccine on the C8166 human T cell line protected macaques against challenge with human cell-grown SIVmac. These results suggest that protection may be mediated by xenoimmunization with the vaccine cell substrate proteins. All vaccinated macaques had anti-cell antibodies. Major reactivity to MHC class I antigens was found as well as to a 70-kD protein detectable only under nonreducing conditions.
To determine the role that cellular immune responses play in the protection conferred by vaccination with attenuated SIVmac32H (pC8), we have attempted to deplete macaques of their CD8+ cells prior to challenge with wild-type SIVmac32H (pJ5). In two of four pC8-infected macaques, N109 and N112, a transient partial depletion of CD8+ cells by antibody treatment was achieved. On the day of challenge peripheral CD2+CD4-CD8+ cell counts were reduced by 92 and 95%, respectively, in animals N109 and N112 and their lymph nodes revealed a 46 and 58% reduction, respectively, in CD2+CD4-CD8+ cells. Two other pC8-immunized macaques, N110 and N111, treated in the same way, did not show significant depletion of CD8+ cells. None of these four pC8-immunized animals became infected when challenged with 50 MID50 of pJ5. Treatment of a further four pC8-infected and protected macaques and two naive control animals with Campath-1H antibody successfully depleted peripheral CD3+ cell counts by >99% in all treated animals. Campath-1H depletion resulted in enhanced, longer lasting lymphoid depletion. Yet subsequent challenge with 20 MID50 of pJ5 still failed to infect the pC8-immunized animals. All eight of the naive controls, including two Campath-1H-treated animals, became infected following challenge. In summary, partial depletion of circulating CD8+ cells or total lymphocytes prior to challenge failed to abrogate the protection conferred by vaccination with pC8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.