Nuclear-localized mtDNA pseudogenes might explain a recent report describing a heteroplasmic mtDNA molecule containing five linked missense mutations dispersed over the contiguous mtDNA CO1 and CO2 genes in Alzheimer's disease (AD) patients. To test this hypothesis, we have used the PCR primers utilized in the original report to amplify CO1 and CO2 sequences from two independent °( mtDNA-less) cell lines. CO1 and CO2 sequences amplified from both of the °cells, demonstrating that these sequences are also present in the human nuclear DNA. The nuclear pseudogene CO1 and CO2 sequences were then tested for each of the five ''AD'' missense mutations by restriction endonuclease site variant assays. All five mutations were found in the nuclear CO1 and CO2 PCR products from °cells, but none were found in the PCR products obtained from cells with normal mtDNA. Moreover, when the overlapping nuclear CO1 and CO2 PCR products were cloned and sequenced, all five missense mutations were found, as well as a linked synonymous mutation. Unlike the findings in the original report, an additional 32 base substitutions were found, including two in adjacent tRNAs and a two base pair deletion in the CO2 gene. Phylogenetic analysis of the nuclear CO1 and CO2 sequences revealed that they diverged from modern human mtDNAs early in hominid evolution about 770,000 years before present. These data would be consistent with the interpretation that the missense mutations proposed to cause AD may be the product of ancient mtDNA variants preserved as nuclear pseudogenes.
A novel point mutation in the ND6 subunit of complex I at position 14,459 of the mitochondrial DNA (MTND6*LDY T14459A) was identified as a candidate mutation for the highly tissue-specific disease. Leber's hereditary optic neuropathy plus dystonia. Since the MTND6*LDYT14459A mutation was identified in a single family, other pedigrees with the mutation are needed to confirm its association with the disease. Clinical, biochemical, and genetic characterization is reported in two additional pedigrees. Leber's hereditary optic neuropathy developed in two family members in one pedigree. The daughter had clinically silent basal ganglia lesions. In a second pedigree, a single individual presented with childhood-onset generalized dystonia and bilateral basal ganglia lesions. Patient groups that included individuals with Leigh's disease, dystonia plus complex neurodegeneration, and Leber's hereditary optic neuropathy did not harbor the MTND6*LDYT14459A mutation, suggesting that this mutation displays a high degree of tissue specificity, thus producing a narrow phenotypic range. These results confirm the association of the MTND6*LDYT14459A mutation with Leber's hereditary optic neuropathy and/or dystonia. As the first genetic abnormality that has been identified to cause generalized dystonia, this mutation suggests that nuclear DNA or mitochondrial DNA mutations in oxidative phosphorylation genes are important considerations in the pathogenesis of dystonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.