A major theory of aging is that oxidative damage may accumulate in DNA and contribute to physiological changes associated with aging. We examined age-related accumulation of oxidative damage to both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in human brain tissue. We measured the oxidized nucleoside, 8-hydroxy-2'-deoxyguanosine (OH8dG), in DNA isolated from 3 regions of cerebral cortex and cerebellum from 10 normal humans aged 42 to 97 years. The amount of OH8dG, expressed as a ratio of the amount of deoxyguanosine (dG) or as fmol/micrograms of DNA, increased progressively with normal aging in both nDNA and mtDNA; however, the rate of increase with age was much greater in mtDNA. There was a significant 10-fold increase in the amount of OH8dG in mtDNA as compared with nDNA in the entire group of samples, and a 15-fold significant increase in patients older than 70 years. These results show for the first time that there is a progressive age-related accumulation in oxidative damage to DNA in human brain, and that the mtDNA is preferentially affected. It is possible that such damage may contribute to age-dependent increases in incidence of neurodegenerative diseases.
We have examined the role of somatic mitochondrial DNA (mtDNA) mutations in human ageing by quantitating the accumulation of the common 4977 nucleotide pair (np) deletion (mtDNA4977) in the cortex, putamen and cerebellum. A significant increase in the mtDNA4977 deletion was seen in elderly individuals. In the cortex, the deleted to total mtDNA ratio ranged from 0.00023 to 0.012 in 67-77 year old brains and up to 0.034 in subjects over 80. In the putamen, the deletion level ranged from 0.0016 to 0.010 in 67 to 77 years old up to 0.12 in individuals over the age of 80. The cerebellum remained relatively devoid of mtDNA deletions. Similar changes were observed with a different 7436 np deletion. These changes suggest that somatic mtDNA deletions might contribute to the neurological impairment often associated with ageing.
Diabetes mellitus (DM) is one of the most common chronic disorders of children and adults. Several reports have suggested an increased incidence of maternal transmission in some forms of DM. Therefore, we tested a pedigree with maternally transmitted DM and deafness for mitochondrial DNA mutations and discovered a 10.4 kilobase (kb) mtDNA deletion. This deletion is unique because it is maternally inherited, removes the light strand origin (OL) of mtDNA replication, inhibits mitochondrial protein synthesis, and is not associated with the hallmarks of mtDNA deletion syndromes. This discovery demonstrates that DM can be caused by mtDNA mutations and suggests that some of the heterogeneity of this disease results from the novel features of mtDNA genetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.