Oxidative damage to DNA may play a role in both normal aging and in neurodegenerative diseases. We examined whether Alzheimer's disease (AD) is associated with increased oxidative damage to nDNA and mtDNA in postmortem brain tissue. We measured the oxidized nucleoside, 8-hydroxy-2'-deoxyguanosine (OH8dG), in DNA isolated from three regions of cerebral cortex and cerebellum in 13 AD and 13 age-matched controls. There was a significant threefold increase in the amount of OH8dG in mtDNA in parietal cortex of AD patients compared with controls. In the entire group of samples there was a small significant increase in oxidative damage to nDNA and a highly significant threefold increase in oxidative damage to mtDNA in AD compared with age-matched controls. These results confirm that mitochondrial DNA is particularly sensitive to oxidative damage, and they show that there is increased oxidative damage to DNA in AD, which may contribute to the neurodegenerative process.
The etiology of the selective neuronal death that occurs in Huntington's disease (HD) is unknown. Several lines of evidence implicate the involvement of energetic defects and oxidative damage in the disease process, including a recent study that demonstrated an interaction between huntingtin protein and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Using spectrophotometric assays in postmortem brain tissue, we found evidence of impaired oxidative phosphorylation enzyme activities restricted to the basal ganglia in HD brain, while enzyme activities were unaltered in three regions relatively spared by HD pathology (frontal cortex, parietal cortex, and cerebellum). Citrate synthase-corrected complex II-III activity was markedly reduced in both HD caudate (-29%) and putamen (-67%), and complex IV activity was reduced in HD putamen (-62%). Complex I and GAPDH activities were unaltered in all regions examined. We also measured levels of the oxidative damage product 8-hydroxydeoxyguanosine (OH8dG) in nuclear DNA, and superoxide dismutase (SOD) activity. OH8dG levels were significantly increased in HD caudate. Cytosolic SOD activity was slightly reduced in HD parietal cortex and cerebellum, whereas particulate SOD activity was unaltered in these regions. These results further support a role for metabolic dysfunction and oxidative damage in the pathogenesis of HD.
A major theory of aging is that oxidative damage may accumulate in DNA and contribute to physiological changes associated with aging. We examined age-related accumulation of oxidative damage to both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in human brain tissue. We measured the oxidized nucleoside, 8-hydroxy-2'-deoxyguanosine (OH8dG), in DNA isolated from 3 regions of cerebral cortex and cerebellum from 10 normal humans aged 42 to 97 years. The amount of OH8dG, expressed as a ratio of the amount of deoxyguanosine (dG) or as fmol/micrograms of DNA, increased progressively with normal aging in both nDNA and mtDNA; however, the rate of increase with age was much greater in mtDNA. There was a significant 10-fold increase in the amount of OH8dG in mtDNA as compared with nDNA in the entire group of samples, and a 15-fold significant increase in patients older than 70 years. These results show for the first time that there is a progressive age-related accumulation in oxidative damage to DNA in human brain, and that the mtDNA is preferentially affected. It is possible that such damage may contribute to age-dependent increases in incidence of neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.