Pregnant women are at high risk for severe influenza disease outcomes, yet insights into the underlying mechanisms are limited. Here, we present models of H1N1 infection in syngenic and allogenic pregnant mice; infection in the latter mirrors the severe course of 2009 pandemic influenza in pregnant women. We found that the anti-viral immune response in the pregnant host was significantly restricted as compared to the non-pregnant host. This included a reduced type I interferon response as well as impaired migration of CD8 T cells into the lung. The multi-faceted failure to mount an anti-viral response in allogenic pregnant mice resulted in a less stringent selective environment that promoted the emergence of 2009 H1N1 virus variants that specifically counteract type I interferon response and mediate increased viral pathogenicity. These insights underscore the importance of influenza vaccination compliance in pregnant women and may open novel therapeutic avenues.
There is increasing evidence that 2009 pandemic H1N1 influenza viruses have evolved after pandemic onset giving rise to severe epidemics in subsequent waves. However, it still remains unclear which viral determinants might have contributed to disease severity after pandemic initiation. Here, we show that distinct mutations in the 2009 pandemic H1N1 virus genome have occurred with increased frequency after pandemic declaration. Among those, a mutation in the viral hemagglutinin was identified that increases 2009 pandemic H1N1 virus binding to human-like α2,6-linked sialic acids. Moreover, these mutations conferred increased viral replication in the respiratory tract and elevated respiratory droplet transmission between ferrets. Thus, our data show that 2009 H1N1 influenza viruses have evolved after pandemic onset giving rise to novel virus variants that enhance viral replicative fitness and respiratory droplet transmission in a mammalian animal model. These findings might help to improve surveillance efforts to assess the pandemic risk by emerging influenza viruses.
Congenital Zika virus (ZIKV) syndrome may cause fetal microcephaly in ~1% of affected newborns. Here, we investigate whether the majority of clinically inapparent newborns might suffer from long-term health impairments not readily visible at birth. Infection of immunocompetent pregnant mice with high-dose ZIKV caused severe offspring phenotypes, such as fetal death, as expected. By contrast, low-dose (LD) maternal ZIKV infection resulted in reduced fetal birth weight but no other obvious phenotypes. Male offspring born to LD ZIKV-infected mothers had increased testosterone (TST) levels and were less likely to survive in utero infection compared to their female littermates. Males also presented an increased number of immature neurons in apical and basal hippocampal dendrites, while female offspring had immature neurons in basal dendrites only. Moreover, male offspring with high but not very high (storm) TST levels were more likely to suffer from learning and memory impairments compared to females. Future studies are required to understand the impact of TST on neuropathological and neurocognitive impairments in later life. In summary, increased sex-specific vigilance is required in countries with high ZIKV prevalence, where impaired neurodevelopment may be camouflaged by a healthy appearance at birth.
Torpid states are used by many endotherms to save energy during winter. During torpor, metabolic rate is downregulated to fractions of resting metabolic rate and often associated with a severe drop in body temperature that challenges mammalian physiology. Understanding the mechanisms regulating this extreme depression of metabolism bears enormous potential for biomedical research. Torpor behavior has been extensively studied in the Djungarian hamster, also known as Siberian hamster. It is dependent on many preparatory adaptations of physiological and endocrine systems that are likely to be integrated by the hypothalamus eventually controlling metabolism. Although substantial knowledge exists about prerequisites and characteristics of torpor in this species, the cascade of events and their mechanisms of action are not well understood. This review summarizes the current state of knowledge about mechanisms of metabolic regulation in the Djungarian hamster focusing on the potential roles of thyroid hormone and glucose metabolism.
Influenza A viruses (IAV) are zoonotic pathogens relevant to human, domestic animal and wildlife health. Many avian IAVs are transmitted among waterfowl via a faecal-oral-route. Therefore, environmental water where waterfowl congregate may play an important role in the ecology and epidemiology of avian IAV. Water and sediment may sustain and transmit virus among individuals or species. It is unclear at what concentrations waterborne viruses are infectious or remain detectable. To address this, we performed lake water and sediment dilution experiments with varying concentrations or infectious doses of four IAV strains from seal, turkey, duck and gull. To test for infectivity of the IAV strains in a concentration dependent manner, we applied cultivation to specific pathogen free (SPF) embryonated chicken eggs and Madin-Darby Canine Kidney (MDCK) cells. IAV recovery was more effective from embryonated chicken eggs than MDCK cells for freshwater lake dilutions, whereas, MDCK cells were more effective for viral recovery from sediment samples. Low infectious dose (1 PFU/200 μL) was sufficient in most cases to detect and recover IAV from lake water dilutions. Sediment required higher initial infectious doses (≥ 100 PFU/200 μL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.