Macrophage infiltration has been identified as an independent poor prognostic factor in several cancer types. The major survival factor for these macrophages is macrophage colony-stimulating factor 1 (CSF-1). We generated a monoclonal antibody (RG7155) that inhibits CSF-1 receptor (CSF-1R) activation. In vitro RG7155 treatment results in cell death of CSF-1-differentiated macrophages. In animal models, CSF-1R inhibition strongly reduces F4/80(+) tumor-associated macrophages accompanied by an increase of the CD8(+)/CD4(+) T cell ratio. Administration of RG7155 to patients led to striking reductions of CSF-1R(+)CD163(+) macrophages in tumor tissues, which translated into clinical objective responses in diffuse-type giant cell tumor (Dt-GCT) patients.
SummaryImmune cells in the tumor microenvironment modulate cancer progression and are attractive therapeutic targets. Macrophages and T cells are key components of the microenvironment, yet their phenotypes and relationships in this ecosystem and to clinical outcomes are ill defined. We used mass cytometry with extensive antibody panels to perform in-depth immune profiling of samples from 73 clear cell renal cell carcinoma (ccRCC) patients and five healthy controls. In 3.5 million measured cells, we identified 17 tumor-associated macrophage phenotypes, 22 T cell phenotypes, and a distinct immune composition correlated with progression-free survival, thereby presenting an in-depth human atlas of the immune tumor microenvironment in this disease. This study revealed potential biomarkers and targets for immunotherapy development and validated tools that can be used for immune profiling of other tumor types.
The tumor-permissive and immunosuppressive characteristics of tumor-associated macrophages (TAM) have fueled interest in therapeutically targeting these cells. In this context, the colony-stimulating factor 1 (CSF1)/colony-stimulating factor 1 receptor (CSF1R) axis has gained the most attention, and various approaches targeting either the ligands or the receptor are currently in clinical development. Emerging data on the tolerability of CSF1/CSF1R-targeting agents suggest a favorable safety profile, making them attractive combination partners for both standard treatment modalities and immunotherapeutic agents. The specificity of these agents and their potent blocking activity has been substantiated by impressive response rates in diffuse-type tenosynovial giant cell tumors, a benign connective tissue disorder driven by CSF1 in an autocrine fashion. In the malignant disease setting, data on the clinical activity of immunotherapy combinations with CSF1/CSF1R-targeting agents are pending. As our knowledge of macrophage biology expands, it becomes apparent that the complex phenotypic and functional properties of macrophages are heavily influenced by a continuum of survival, differentiation, recruitment, and polarization signals within their specific tissue environment. Thus, the role of macrophages in regulating tumorigenesis and the impact of depleting and/or reprogramming TAM as therapeutic approaches for cancer patients may vary greatly depending on organ-specific characteristics of these cells. We review the currently available clinical safety and efficacy data with CSF1/CSF1R-targeting agents and provide a comprehensive overview of ongoing clinical studies. Furthermore, we discuss the local tissue macrophage and tumor-type specificities and their potential impact on CSF1/CSF1R-targeting treatment strategies for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.