Nanocontainers such as mesoporous silica particles and polymersomes are versatile structures containing holes or pores which are used for the entrapment of small molecules and the introduction of specific functionalities. They are widely applied in drug delivery, biomedicine, bioreactors, and analytical applications. In the last case, nanocontainers usually serve as amplification systems. They are hence synthesized to entrap signaling molecules and to bear functional moieties at the outer surface, which in turn enable specific analyte recognition and control of the nanocontainer pore permeability. This Review outlines the most important nanocontainer materials and discusses their synthesis, surface chemistry modifications, and strategies for molecule entrapment. Their advantages, challenges, and limitations are critically discussed in view of other common signal amplification strategies for different assay formats and various detection methods.
Magnetized liposome (magnetosomes) labels can overcome diffusion limitations in bioassays through fast and easy magnetic attraction. Our aim therefore was to advance the understanding of factors influencing their synthesis focusing on encapsulation strategies and synthesis parameters. Magnetosome synthesis is governed by the surface chemistry and the size of the magnetic nanoparticles used. We therefore studied the two possible magnetic labelling strategies, which are the incorporation of small, hydrophobic magnetic nanoparticles (MNPs) into the bilayer core (b-liposomes) and the entrapment of larger hydrophilic MNPs into the liposomes' inner cavity (i-liposomes). Furthermore, they were optimized and compared for application in a DNA bioassay. The major obstacles observed for each of these strategies were on the one hand the need for highly concentrated hydrophilic MNPs, which is limited by their colloidal stability and costs, and on the other hand the balancing of magnetic strength vs. size for the hydrophobic MNPs. In the end, both strategies yielded magnetosomes with good performance, which improved the limit of detection of a nonmagnetic DNA hybridization assay by a factor of 3-8-fold. Here, i-liposomes with a magnetization yield of 5% could be further improved through a simple magnetic pre-concentration step and provided in the end an 8-fold improvement of the limit of detection compared with non-magnetic conditions. In the case of b-liposomes, Januslike particles were generated during the synthesis and yielded a fraction of 15% magnetosomes directly. Surprisingly, further magnetic pre-concentration did not improve their bioassay performance. It is thus assumed that magnetosomes pull normal liposomes through the magnetic field towards the surface and the presence of more magnetosomes is not needed. The overall stability of magnetosomes during storage and magnetic action, their superior bioassay performance, and their adaptability towards size and surface chemistry of MNPs makes them highly valuable signal enhancers in bioanalysis and potential tools for bioseparations.
Liposomes have been widely applied in bioanalytical assays. Most liposomes used bare negative charges to prevent non-specific binding and increase colloidal stability. Here, in contrast, highly stable, positively charged liposomes entrapping the fluorescent dye sulforhodamine B (SRB) were developed to serve as a secondary, non-specific label‚ and signal amplification tool in bioanalytical systems by exploiting their electrostatic interaction with negatively charged vesicles, surfaces, and microorganisms. The cationic liposomes were optimized for long-term stability (> 5 months) and high dye entrapment yield. Their capability as secondary, non-specific labels was first successfully proven through electrostatic interactions of cationic and anionic liposomes using dynamic light scattering, and then in a bioassay with fluorescence detection leading to an enhancement factor of 8.5 without any additional surface blocking steps. Moreover, the cationic liposomes bound efficiently to anionic magnetic beads were stable throughout magnetic separation procedures and could hence serve directly as labels in magnetic separation and purification strategies. Finally, the electrostatic interaction was exploited for the direct, simple, non-specific labeling of gram-negative bacteria. Isolated Escherichia coli cells were chosen as models and direct detection was demonstrated via fluorescent and chemiluminescent liposomes. Thus, these cationic liposomes can be used as generic labels for the development of ultrasensitive bioassays based on electrostatic interaction without the need for additional expensive recognition units like antibodies, where desired specificity is already afforded through other strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.