SummaryHuntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs.
Fragile X syndrome (FXS) is an incurable neurodevelopmental disorder with no effective treatment. FXS is caused by epigenetic silencing of FMR1 and loss of FMRP expression. To investigate the consequences of FMRP deficiency in the context of human physiology, we established isogenic FMR1 knockout (FMR1KO) human embryonic stem cells (hESCs). Integrative analysis of the transcriptomic and proteomic profiles of hESC-derived FMRPdeficient neurons revealed several dysregulated pathways important for brain development including processes related to axon development, neurotransmission, and the cell cycle. We functionally validated alterations in a number of these pathways, showing abnormal neural rosette formation and increased neural progenitor cell proliferation in FMR1KO cells. We further demonstrated neurite outgrowth and branching deficits along with impaired electrophysiological network activity in FMRP-deficient neurons. Using isogenic FMR1KO hESC-derived neurons, we reveal key molecular signatures and neurodevelopmental abnormalities arising from loss of FMRP. We anticipate that the FMR1KO hESCs and the neuronal transcriptome and proteome datasets will provide a platform to delineate the pathophysiology of FXS in human neural cells..
We experience the world through multiple senses simultaneously. To better understand mechanisms of multisensory processing we ask whether inputs from two senses (auditory and visual) can interact and drive plasticity in neural-circuits of the primary visual cortex (V1). Using genetically-encoded voltage and calcium indicators, we find coincident audio-visual experience modifies both the supra and subthreshold response properties of neurons in L2/3 of mouse V1. Specifically, we find that after audio-visual pairing, a subset of multimodal neurons develops enhanced auditory responses to the paired auditory stimulus. This cross-modal plasticity persists over days and is reflected in the strengthening of small functional networks of L2/3 neurons. We find V1 processes coincident auditory and visual events by strengthening functional associations between feature specific assemblies of multimodal neurons during bouts of sensory driven co-activity, leaving a trace of multisensory experience in the cortical network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.