An unsteady numerical investigation was performed to examine time dependent behaviors of the tip leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. A transonic, high-pressure turbine stage was modeled and simulated using a stage pressure ratio of 3.2. The rotor’s tip clearance was 1.2 mm in height (3% of the rotor span) and its speed was set at 9500 rpm. Periodic flow is observed for each vane passing period. Tip leakage flow as well as heat transfer data showed highly time dependent behaviors. A stator trailing edge shock appears as the turbine stage is operating at transonic conditions. The shock alters the flow condition in the rotor section, namely, the tip leakage flow structures and heat transfer rate distributions. The instantaneous Nusselt number distributions are compared to the time averaged and steady-state results. The same patterns in tip leakage flow structures and heat transfer rate distributions were observed in both unsteady and steady simulations. However, the unsteady simulation captured the locally time-dependent high heat transfer phenomena caused by the unsteady interaction with the upstream vane trailing-edge shock and the passing wake.
The optimization aims to maximize the film cooling performance while minimizing the corresponding aerodynamic penalty. The film cooling performance is assessed using the adiabatic film cooling effectiveness, while the aerodynamic penalty is measured with a mass-averaged total pressure loss coefficient. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. Two staggered rows of discrete cylindrical film cooling holes on the suction surface of a turbine vane are considered. The effect of varying the coolant flow parameters on the adiabatic film cooling effectiveness and the aerodynamic loss is analyzed using the optimization method and three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations. The CFD predictions of the adiabatic film cooling effectiveness and aerodynamic performance are assessed and validated against corresponding experimental measurements. The optimal solutions are reproduced in the experimental facility and the Pareto front is substantiated with experimental data. A non-dominated sorting genetic algorithm (NSGA-II) is coupled with an artificial neural network (ANN) to perform a multiple objective optimization of the film coolant flow parameters on the suction surface of a high pressure gas turbine vane. The numerical predictions are employed to construct the artificial neural network that produces low-fidelity predictions of the objectives during the optimization. The Pareto front of optimal solutions is generated by the optimization methodology.
This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a high film cooling effectiveness and a low aerodynamic loss. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes (RANS) analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The effect of varying these coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process involves a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aerodynamics and wall heat transfer are validated against experimental data. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The results of this optimization are reported in terms of the aerodynamic loss and adiabatic cooling effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.