Several approaches were taken to examine the role of N-assimilate supply in the control of soybean (Glycine max) seed composition. In the first study, developing seeds were grown in vitro with D-[U-14C]sucrose (Suc) and different concentrations of Gln. Light stimulated carbon flux into oil and protein, and was required to sustain Suc uptake and anabolic processes under conditions of elevated nitrogen supply. High Gln supply resulted in higher transcript levels of beta-conglycinin and oleosin. In the second study, analyses of soluble amino acid pools in two genetically related lines, NC103 and NC106 (low- and high-seed protein, respectively) showed that, in the light, NC106 accumulated higher levels of Asn and several other amino acids in developing cotyledons compared with NC103, whereas at the seed coat and apoplast levels both lines were similar. In the dark, NC103 accumulated Gln, Arg, and its precursors, suggesting a reduced availability of organic acids required for amino acid interconversions, while NC106 maintained higher levels of the pyruvate-derived amino acids Val, Leu, and Ile. Comparing NC103 and NC106, differences in seed composition were reflected in steady-state transcript levels of storage proteins and the lipogenic enzyme multi-subunit acetyl CoA carboxylase. In the third study, a positive correlation (P < or = 0.05) between free Asn in developing cotyledons and seed protein content at maturity was confirmed in a comparison of five unrelated field-grown cultivars. The findings support the hypothesis that high seed-protein content in soybean is determined by the capacity of the embryo to take up nitrogen sources and to synthesize storage proteins. Asn levels are probably tightly regulated in the embryo of high-protein lines, and may act as a metabolic signal of seed nitrogen status.
Artemisia annua L. is the only natural resource that produces artemisinin (Qinghaosu), an endoperoxide sesquiterpene lactone used in the artemisinin-combination therapy of malaria. The cross-hybridization properties of A. annua do not favor studying artemisinin biosynthesis. To overcome this problem, in this study, we report on selection of self-pollinated A. annua plants and characterize their development and artemisinin biosynthesis. Self-pollinated F2 plants selected were grown under optimized growth conditions, consisting of long day (16 h of light) and short day (9 h of light) exposures in a phytotron. The life cycles of these plants were approximately 3 months long, and final heights of 30-35 cm were achieved. The leaves on the main stems exhibited obvious morphological changes, from indented single leaves to odd, pinnately compound leaves. Leaves and flowers formed glandular and T-shaped trichomes on their surfaces. The glandular trichome densities increased from the bottom to the top leaves. High performance liquid chromatography-mass spectrometry-based metabolic profiling analyses showed that leaves, flowers, and young seedlings of F2 plants produced artemisinin. In leaves, the levels of artemisinin increased from the bottom to the top of the plants, showing a positive correlation to the density increase of glandular trichomes. RT-PCR analysis showed that progeny of self-pollinated plants expressed the amorpha-4, 11-diene synthase (ADS) and cytochrome P450 monooxygenase 71 AV1 (CYP71AV1) genes, which are involved in artemisinin biosynthesis in leaves and flowers. The use of self-pollinated A. annua plants will be a valuable approach to the study of artemisinin biosynthesis.
1995. Responses to sucrose and glutamine by soybean embryos grown in vitro Immature soybean {Giycine max [L,| Merr. cv. Ransom) embryos were grown in vitro in the presence of different concentrations of sucrose and glutamine to examine how availability of carbohydrate and nitrogen affects dr>' matter accumulation and embryo composition. Embrvos were transferred to fresh medium every 4 days to maintain sucrose and glutamine concentrations of the culture medium. In all experiments, aecumulalion of dry matter and protein content increased when the sucrose concentration of the culture medium was increased from 1.5 to 150 mAf: however, a relatively greater enhancement of dry matter than ol protein accumulation resulted in a lower protein concentration at 150 than at 1.5 mM sucrose. Both content and concentration of protein were increased by the increases in glutamine supply to concentrations exceeding 68% protein at 120 mM glutamine. In combination with 150 mM sucrose, however, oil increased as glutamine supply was increased from 0.6 to 6 vaM and then decreased as Eiiutamine supply was increased from 6 to 120 mM. Varying the concentration of sucrose available during seed development also affecled embrvo composition. Decreased availability of sucrose during either the early or late portion of the culture period resulted in lower accumulation of dry matter as well as oil. Protein concentration was actually higher for embryos transferred from 150 to 1.5 mM sucrose than for those remaining in 150 miW throughout the culture period: however, the greater percentage of prolein was due to a decrease in accumulation of dry weight. In addition, embryo composition was affected by altering the availability of glutamine during culture, indicating that variation in the level of nitrogen assimilate delivered during seed development can change embryo composition. Decreasing the glutamine concentration of the medium low ered bolh protein and oil content. In contrast, increasing the glutamine concentration of the medium from 0.6 to 6 m.M S days after initiation of culture increased the protein content and concen(ration of the embryo while oil content was not affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.