Chlorophyll (Chla) and chlorophyllin (CHL) were shown previously to reduce carcinogen bioavailability, biomarker damage, and tumorigenicity in trout and rats. These findings were partially extended to humans, where CHL reduced excretion of aflatoxin B1 (AFB1)-DNA repair products in Chinese unavoidably exposed to dietary AFB1. However, neither AFB1 pharmacokinetics nor Chla effects were examined. We conducted an unblinded crossover study to establish AFB1 pharmacokinetic parameters among four human volunteers, and to explore possible effects of CHL or Chla cotreatment in three of those volunteers. For protocol 1, fasted subjects received an Institutional Review Board–approved dose of 14C-AFB1 (30 ng, 5 nCi) by capsule with 100 mL water, followed by normal eating and drinking after 2 hours. Blood and cumulative urine samples were collected over 72 hours, and 14C- AFB1 equivalents were determined by accelerator mass spectrometry. Protocols 2 and 3 were similar except capsules also contained 150 mg of purified Chla or CHL, respectively. Protocols were repeated thrice for each volunteer. The study revealed rapid human AFB1 uptake (plasma ka, 5.05 ± 1.10 h−1; Tmax, 1.0 hour) and urinary elimination (95% complete by 24 hours) kinetics. Chla and CHL treatment each significantly impeded AFB1 absorption and reduced Cmax and AUCs (plasma and urine) in one or more subjects. These initial results provide AFB1 pharmacokinetic parameters previously unavailable for humans, and suggest that Chla or CHL co-consumption may limit the bioavailability of ingested aflatoxin in humans, as they do in animal models.
Chemoprevention by chlorophyll (Chl) was investigated in a rat multi-organ carcinogenesis model. Twenty-one male F344 rats in three gavage groups (N = 7 rats each) received five daily doses of 250 microg/kg [(3)H]-aflatoxin B(1) ([(3)H]-AFB(1)) alone, or with 250 mg/kg chlorophyllin (CHL), or an equimolar amount (300 mg/kg) of Chl. CHL and Chl reduced hepatic DNA adduction by 42% (P = 0.031) and 55% (P = 0.008), respectively, AFB(1)-albumin adducts by 65% (P < 0.001) and 71% (P < 0.001), respectively, and the major AFB-N(7)-guanine urinary adduct by 90% (P = 0.0047) and 92% (P = 0.0029), respectively. To explore mechanisms, fluorescence quenching experiments established formation of a non-covalent complex in vitro between AFB(1) and Chl (K(d) = 1.22 +/- 0.05 microM, stoichiometry = 1Chl:1AFB(1)) as well as CHL (K(d) = 3.05 +/- 0.04 microM; stoichiometry = 1CHL:1AFB(1)). The feces of CHL and Chl co-gavaged rats contained 137% (P = 0.0003) and 412% (P = 0.0048) more AFB(1) equivalents, respectively, than control feces, indicating CHL and Chl inhibited AFB(1) uptake. However, CHL or Chl treatment in vivo did not induce hepatic quinone reductase (NAD(P)H:quinone oxidoreductase) or glutathione S-transferase (GST) above control levels. These results are consistent with a mechanism involving complex-mediated reduction of carcinogen uptake, and do not support a role for phase II enzyme induction in vivo under these conditions. In a second study, 30 rats in three experimental groups were dosed as in study 1, but for 10 days. At 18 weeks, CHL and Chl had reduced the volume percent of liver occupied by GST placental form-positive foci by 74% (P < 0.001) and 77% (P < 0.001), respectively compared with control livers. CHL and Chl reduced the mean number of aberrant crypt foci per colon by 63% (P = 0.0026) and 75% (P = 0.0004), respectively. These results show Chl and CHL provide potent chemoprotection against early biochemical and late pathophysiological biomarkers of AFB(1) carcinogenesis in the rat liver and colon.
Clinical investigations using isoform-selective probes to phenotype cytochrome P450 activity and interaction studies using isoform-selective inhibitors to determine P450 involvement in drug metabolism assume minimal interday variability in P450 activity. CYP3A4 is the most abundant human P450 isoform and metabolizes approximately half of all therapeutic agents. This investigation evaluated interday variability in hepatic CYP3A4 activity in males, using the clearances of midazolam and alfentanil as metabolic probes. Midazolam (1 mg) followed 1 hour later by alfentanil (20 micrograms/kg) were administered by intravenous bolus to 9 nonsmoking male volunteers (ages 30 +/- 8 years). Drug administration was repeated 12 and 20 days later. Venous plasma midazolam and alfentanil concentrations were determined by gas chromatography/mass spectrometery. Drug clearances were determined by noncompartmental and multiexponential analysis. There were no significant interday differences in plasma drug concentrations or clearances (3.9 +/- 1.4, 3.9 +/- 1.7, and 4.2 +/- 1.7 ml/kg/min for alfentanil, respectively, and 6.6 +/- 2.0, 7.9 +/- 2.4, and 7.9 +/- 2.5 ml/kg/min for midazolam, respectively, on days 1, 13, and 21 [mean +/- SD]). Interday variability in clearance was 13% +/- 6% and 19% +/- 12% for alfentanil and midazolam, respectively. Interday variability in the clearance of these probes, and presumably hepatic CYP3A4 activity, was small compared with interindividual variability. Consideration of interday variability in the hepatic metabolism of CYP3A4 substrates does not appear significant in the design of clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.