Chlorophyll (Chla) and chlorophyllin (CHL) were shown previously to reduce carcinogen bioavailability, biomarker damage, and tumorigenicity in trout and rats. These findings were partially extended to humans, where CHL reduced excretion of aflatoxin B1 (AFB1)-DNA repair products in Chinese unavoidably exposed to dietary AFB1. However, neither AFB1 pharmacokinetics nor Chla effects were examined. We conducted an unblinded crossover study to establish AFB1 pharmacokinetic parameters among four human volunteers, and to explore possible effects of CHL or Chla cotreatment in three of those volunteers. For protocol 1, fasted subjects received an Institutional Review Board–approved dose of 14C-AFB1 (30 ng, 5 nCi) by capsule with 100 mL water, followed by normal eating and drinking after 2 hours. Blood and cumulative urine samples were collected over 72 hours, and 14C- AFB1 equivalents were determined by accelerator mass spectrometry. Protocols 2 and 3 were similar except capsules also contained 150 mg of purified Chla or CHL, respectively. Protocols were repeated thrice for each volunteer. The study revealed rapid human AFB1 uptake (plasma ka, 5.05 ± 1.10 h−1; Tmax, 1.0 hour) and urinary elimination (95% complete by 24 hours) kinetics. Chla and CHL treatment each significantly impeded AFB1 absorption and reduced Cmax and AUCs (plasma and urine) in one or more subjects. These initial results provide AFB1 pharmacokinetic parameters previously unavailable for humans, and suggest that Chla or CHL co-consumption may limit the bioavailability of ingested aflatoxin in humans, as they do in animal models.
The low bioavailability of metformin may explain the reported lack of clinical success in improving insulin sensitivity with metformin treatment in horses. Dosages and dose intervals previously used may have been insufficient to achieve plasma concentrations of drug comparable to the therapeutic range achieved in humans. Therefore, a larger and more frequently administered dose may be required to fully evaluate efficacy of metformin in horses.
Chemotherapy resistance is a significant obstacle in lung cancer therapy, and has been found to frequently correlate with amplification and overexpression of the c-myc oncogene. Earlier studies have shown that c-Myc inhibition alone is not always effective in cancer models. The purpose of this study was to test different dosing regimen, which included commonly used chemotherapeutic drugs in combination with c-Myc inhibition in a Lewis lung syngeneic drug-resistant murine tumor model. Inhibition of c-myc was specifically achieved by using phosphorodiamidate Morpholino oligomer (PMOs), a novel, non-toxic antisense DNA chemistry for inhibition of gene expression by an RNase H-independent mechanism. When administration of cisplatin overlapped with c-myc PMO (AVI-4126) treatment there was no additional effect on tumor growth inhibition compared to cisplatin alone. In contrast, using a dosing regimen in which cisplatin or taxol treatment preceded AVI-4126, a dramatic decrease in tumor growth rate was observed with tumor areas less then 0.5 cm2 in 60% of the animals at the end of the study. This effect was specific to c-Myc inhibition as other antisense PMOs against p21 or Rad51 showed no such effect in combination with chemotherapy. Immunoblot and HPLC-based analysis of tumor lysates at the end of the study confirmed c-Myc inhibition and detection of intact AVI-4126, respectively. In conclusion, AVI-4126 potentiates the efficacy of chemotherapeutic drugs in a manner that is schedule dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.