Simple, rapid, and inexpensive fabrication of self-cleaning glass surfaces based on wet chemical deposition of HTiO (trititanate) and subsequent transformation of it into TiO (anatase) nanowires on pristine glass surfaces is reported. Despite the low, 55%, surface coverage, the nanowire roughened glass surface showed self-cleaning properties comparable to much thicker, over 100-nm-thick, TiO nanoparticle coated glasses. The superwettable surface showed 12° contact angle. Moreover, ultraviolet (UV) and natural light activated photocatalysis remained effective at enhancing the self-cleaning process in the case of the TiO nanowire coated glass. Time-resolved study of the water droplet spread in millisecond time scales revealed that capillary forces induced by the random nanowire network significantly enhance the water sheeting effect of these textured glass surfaces. Time-resolved experiments revealed that the spreading velocity of the droplets were enhanced by 19% for the TiO nanowire roughened surface and reached a v = 508 mm/s initial spreading speed. Outdoor experiments validated the concept that TiO nanowire coated glass possess self-cleaning properties with significantly reduced titania content compared to nanoparticle based films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.