Demonstrating improved confinement of energetic ions is one of the key goals of the Wendelstein 7-X (W7-X) stellarator. In the past campaigns, measuring confined fast ions has proven to be challenging. Future deuterium campaigns would open up the option of using fusion-produced neutrons to indirectly observe confined fast ions. There are two neutron populations: 2.45 MeV neutrons from thermonuclear and beam-target fusion, and 14.1 MeV neutrons from DT reactions between tritium fusion products and bulk deuterium. The 14.1 MeV neutron signal can be measured using a scintillating fiber neutron detector, whereas the overall neutron rate is monitored by common radiation safety detectors, for instance fission chambers. The fusion rates are dependent on the slowing-down distribution of the deuterium and tritium ions, which in turn depend on the magnetic configuration via fast ion orbits. In this work, we investigate the effect of magnetic configuration on neutron production rates in W7-X. The neutral beam injection, beam and triton slowing-down distributions, and the fusion reactivity are simulated with the ASCOT suite of codes. The results indicate that the magnetic configuration has only a small effect on the production of 2.45 MeV neutrons from DD fusion and, particularly, on the 14.1 MeV neutron production rates. Despite triton losses of up to 50 %, the amount of 14.1 MeV neutrons produced might be sufficient for a time-resolved detection using a scintillating fiber detector, although only in high-performance discharges.
After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 1019 m−3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.
We report on photocurrent generation by X-ray irradiation in methylammonium lead iodide CH 3 NH 3 PbI 3 single crystals. We observed 75% of charge collection efficiency in millimeter sized samples. This efficiency is partially due to the high photon absorption coefficient and X-ray beam stopping power of our lead containing material. The material shows a less than 20% decrease in its performance up to 40 Sv of total X-ray dose, which represents a very good stability. Moreover, our Monte Carlo N-Particle Transport calculations indicate that energetic particle radiation can also be harvested by CH 3 NH 3 PbI 3 . These properties are compared to CH 3 NH 3 SnI 3 and PbI 2 . The possible application of these advantageous properties could be in simultaneous radiation protection and direct electricity production in environments with highly energetic background radiation.
Detection and direct power conversion of high energy and high intensity ionizing radiation could be a key element in next generation nuclear reactor safety systems and space-born devices. For example, the Fukushima catastrophe in 2011 could have been largely prevented if 1% of the reactor's remnant radiation (γ-rays of the nuclear fission)were directly converted within the reactor to electricity to power the water cooling circuit. It is reported here that the hybrid halide perovskite methylammonium lead triiodide could perfectly play the role of a converter. Single crystals were irradiated by a typical shut-down γ-spectrum of a nuclear reactor with 7.61×10 14 Bq activity exhibit a highefficiency of γ-ray to free charge carrier conversion with radiation hardening. The power density of 0.3 mW/kg of methylammonium lead triiodide at 50 Sv/h means a four times higher efficiency than that for silicon-based cells. The material was stable to the limits of the experiment without changing its performance up to 100 Sv/h dose rate and 57 Sv H*(10) ambient total γ-dose. Moreover, the γ-shielding performance of methylammonium lead triiodide was found to be superior to both ordinary and barite concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.