BackgroundNeurotrophin receptors were initially identified in neural cells. They were recently detected in some cancers in association with invasiveness, but the function of these tyrosine kinase receptors was not previously investigated in colorectal cancer (CRC) cells.Methods and FindingsWe report herein that human CRC cell lines synthesize the neural growth factor Brain-derived neurotrophic factor (BDNF) under stress conditions (serum starvation). In parallel, CRC cells expressed high- (TrkB) and low-affinity (p75NTR) receptors at the plasma membrane, whereas TrkA and TrkC, two other high affinity receptors for NGF and NT-3, respectively, were undetectable. We demonstrate that BDNF induced cell proliferation and had an anti-apoptotic effect mediated through TrkB, as assessed by K252a, a Trk pharmacologic inhibitor. It suppressed both cell proliferation and survival of CRC cells that do not express TrkA nor TrkC. In parallel to the increase of BDNF secretion, sortilin, a protein acting as a neurotrophin transporter as well as a co-receptor for p75NTR, was increased in the cytoplasm of primary and metastatic CRC cells, which suggests that sortilin could regulate neurotrophin transport in these cells. However, pro-BDNF, also detected in CRC cells, was co-expressed with p75NTR at the cell membrane and co-localized with sortilin. In contrast to BDNF, exogenous pro-BDNF induced CRC apoptosis, which suggests that a counterbalance mechanism is involved in the control of CRC cell survival, through sortilin as the co-receptor for p75NTR, the high affinity receptor for pro-neurotrophins. Likewise, we show that BDNF and TrkB transcripts (and not p75NTR) are overexpressed in the patients' tumors by comparison with their adjacent normal tissues, notably in advanced stages of CRC.ConclusionTaken together, these results highlight that BDNF and TrkB are essential for CRC cell growth and survival in vitro and in tumors. This autocrine loop could be of major importance to define new targeted therapies.
Recently, cancer stem cells (CSCs) have been identified in many types of cancers, such as colorectal cancer (CRC). CSCs seem to be involved in initiation, growth, and tumor metastasis, as well as in radio- and chemotherapy failures. CSCs appears as new biological targets for cancer therapy, requiring the development of noninvasive cell sorting methods. In this study, we used sedimentation field flow fractionation (SdFFF) to prepare enriched populations of CSCs from eight cell lines corresponding to different CRC grades. On the basis of phenotypic and functional characterizations, "hyperlayer" elution resulted in a fraction overexpressing CSC markers (CD44, CD166, EpCAM) for all cell lines. CSCs were eluted in the last fraction for seven out of eight cell lines, but in the first for HCT116. These results suggest, according to the literature, that two different pools of CSCs exist, quiescent and activated, which can both be sorted by SdFFF. Moreover, according to CSC properties, enriched fractions are able to form colonies.
Cancer stem cells (CSCs) play critical roles in cancer, making them important targets for new diagnostic and therapeutic approaches. Since CSCs are heterogeneous and not abundant in tumors, and few specific markers for these cells currently exist, new methods to isolate and characterize them are required. To address this issue, we developed a new label-free methodology to isolate, enrich, and identify CSCs from an heterogeneous tumor cell subpopulation using a cell sorting method (sedimentation field flow fractionation, SdFFF) and a biosensor as a detector. Enrichment was optimized using an original protocol and U87-MG glioblastoma cells cultured in a normal (N) or defined (D) medium (± fetal bovine serum, FBS) under normoxic (N, p O 2 = 20%) or hypoxic (H, p O 2 < 2%) conditions to obtain four cell populations: NN, NH, DN, and DH. After elution of CSCs via SdFFF using the hyperlayer mode (inertial elution mode for micrometer-sized species), we isolated eight subpopulations with distinct CSC contents based on phenotypical and functional properties, ranging from NN F1 with a lower CSC content to DH F3 with a higher CSC content. Reflecting biological differences, the intrinsic intracellular dielectric permittivity increased from NN to DH conditions. The largest difference in electromagnetic signature was observed between NN F1 and DH F3, in which the CSC content was lowest and highest, respectively. The results demonstrate that microwave dielectric spectroscopy can be used to reliably and efficiently distinguish stem cell characteristics. This new instrumental and methodological approach is an important innovation that allows both enrichment and detection of CSCs, opening the door to novel diagnostic and therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.