Plastocyanin is a nuclear-encoded chloroplast thylakoid lumen protein that is synthesized in the cytoplasm with a large N-terminal extension (66 amino acids). Transport of plastocyanin involves two steps: import across the chloroplast envelope into the stroma, followed by transfer across the thylakoid membrane into the lumen. During transport the N-terminal extension is removed in two parts by two different processing proteases. In this study we examined the functions of the two cleaved parts, C1 and C2, in the transport pathway of plastocyanin. The results show that C1 mediates import into the chloroplast. C1 is sufficient to direct chloroplast import of mutant proteins that lack C2. It is also sufficient to direct import of a nonplastid protein and can be replaced functionally by the transit peptide of an imported stromal protein. C2 is a prerequisite for intraorganellar routing but is not required for chloroplast import. Deletions in C2 result in accumulation of intermediates in the stroma or on the outside of the thylakoids. The fact that C1 is functionally equivalent to a stromal-targeting transit peptide shows that plastocyanin is imported into the chloroplast by way of the same mechanism as stromal proteins, and that import into and routing inside the chloroplasts are independent processes.
Plastocyanin is a nuclear-encoded chloroplast thylakoid lumen protein that is synthesized in the cytoplasm with a large N-terminal extension (66 amino acids). Transport of plastocyanin involves two steps: import across the chloroplast envelope into the stroma, followed by transfer across the thylakoid membrane into the lumen. During transport the N-terminal extension is removed in two parts by two different processing proteases. In this study we examined the functions of the two cleaved parts, C1 and C2, in the transport pathway of plastocyanin. The results show that C1 mediates import into the chloroplast. C1 is sufficient to direct chloroplast import of mutant proteins that lack C2. It is also sufficient to direct import of a nonplastid protein and can be replaced functionally by the transit peptide of an imported stromal protein. C2 is a prerequisite for intraorganellar routing but is not required for chloroplast import. Deletions in C2 result in accumulation of intermediates in the stroma or on the outside of the thylakoids. The fact that C1 is functionally equivalent to a stromal-targeting transit peptide shows that plastocyanin is imported into the chloroplast by way of the same mechanism as stromal proteins, and that import into and routing inside the chloroplasts are independent processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.