This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularized variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with Poisson noise model, resulting in a Kullback-Leibler data fidelity in the variational approach.We present a detailed analysis of the proposed variational model and prove existence of minimizers as well as error estimates. The latter apply to a more general class of problems and generalize existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimization and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data.
We consider two different variational models of transport networks, the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives.As applications of the convex formulation, we use it to perform numerical simulations (to our knowledge this is the first numerical treatment of urban planning), and we prove the lower bound of an energy scaling law which helps better understand optimal networks and their minimal energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.