Despite being a cardinal experimental model, the induction of cirrhosis in rats by repeated exposure to carbon tetrachloride (CCl4) has low reproducibility. Here, we compared two models of cirrhosis induced by orogastric administration of CCl4 once (CCl4-1xWk) or twice a week (CCl4-2xWk) for 12 weeks in male Sprague-Dawley rats. Control rats received water instead of CCl4. Both CCl4 protocols similarly attenuated body weight gain (p < 0.01 vs. Control). Although both CCl4 protocols increased hepatic fibrosis, portal hypertension and splenomegaly, the magnitude of these alterations was higher and more consistent in CCl4-2xWk rats. Importantly, two CCl4-1xWk rats did not develop cirrhosis versus a 100% yield of cirrhosis in CCl4-2xWk rats. The CCl4-2xWk protocol consistently induced liver atrophy together with hematological, biochemical and coagulation abnormalities characteristic of advanced cirrhosis that were absent in CCl4-1xWk rats. Ascites occurred in 20% and 80% of rats in theCCl4-1xWk and CCl4-2xWk groups (p < 0.01). All rats showed normal renal function, arterial blood gases and stable systemic hemodynamics. The total dose of CCl4 and mortality rate were similar in both protocols. The CCl4-2xWk protocol, therefore, was highly reproducible and effective for the induction of experimental cirrhosis within a confined time, representing a valuable advance for liver research.
Our results do not support a role of enoxaparin for improving liver fibrosis, portal hypertension or endothelial dysfunction in active disease at advanced stages of cirrhosis. These disease-related factors and the possibility of a limited therapeutic window should be considered in future studies evaluating the use of anticoagulants in cirrhosis.
Inflammatory bowel disease (IBD) is characterized by an impaired intestinal barrier function. We aimed to investigate the role of reticulon-4B (RTN-4B/NOGO-B), a structural protein of the endoplasmic reticulum, in intestinal barrier function and IBD. We used immunohistochemistry, confocal microscopy, real-time PCR, and Western blotting to study tissue distribution and expression levels of RTN-4B/NOGO-B in control and IBD samples from mouse and humans. We also targeted RTN-4B/NOGO-B using siRNAs in cultured human intestinal epithelial cell (IECs). Epithelial barrier permeability was assessed by transepithelial electrical resistance (TEER) measurement. RTN-4B/NOGO-B is expressed in the intestine mainly by IECs. Confocal microscopy revealed a colocalization of RTN-4B, E-cadherin, and polymerized actin fibers in tissue and cultured IECs. RTN-4B mRNA and protein expression were lower in the colon of IL-10(-/-) compared with wild-type mice. Colocalization of RTN-4B/E-cadherin/actin was reduced in the colon of IL-10(-/-) mice. Analysis of endoscopic biopsies from IBD patients showed a significant reduction of RTN-4B/NOGO-B expression in inflamed mucosa compared with control. Treatment of IECs with H2O2 reduced TEER values and triggered phosphorylation of RTN-4B in serine 107 residues as well as downregulation of RTN-4B expression. Acute RTN-4B/NOGO-B knockdown by siRNAs resulted in a decreased TEER values and reduction of E-cadherin and α-catenin expression and in the amount of F-actin-rich filaments in IECs. Epithelial RTN-4B/NOGO-B was downregulated in human and experimental IBD. RTN-4B participates in the intestinal epithelial barrier function, most likely via its involvement in E-cadherin, α-catenin expression, and actin cytoskeleton organization at sites of cell-to-cell contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.