Robotic assistance via motorized robotic arm manipulators can be of valuable assistance to individuals with upper-limb motor disabilities. Brain-computer interfaces (BCI) offer an intuitive means to control such assistive robotic manipulators. However, BCI performance may vary due to the non-stationary nature of the electroencephalogram (EEG) signals. It, hence, cannot be used safely for controlling tasks where errors may be detrimental to the user. Avoiding obstacles is one such task. As there exist many techniques to avoid obstacles in robotics, we propose to give the control to the robot to avoid obstacles and to leave to the user the choice of the robot behavior to do so a matter of personal preference as some users may be more daring while others more careful. We enable the users to train the robot controller to adapt its way to approach obstacles relying on BCI that detects error-related potentials (ErrP), indicative of the user’s error expectation of the robot’s current strategy to meet their preferences. Gaussian process-based inverse reinforcement learning, in combination with the ErrP-BCI, infers the user’s preference and updates the obstacle avoidance controller so as to generate personalized robot trajectories. We validate the approach in experiments with thirteen able-bodied subjects using a robotic arm that picks up, places and avoids real-life objects. Results show that the algorithm can learn user’s preference and adapt the robot behavior rapidly using less than five demonstrations not necessarily optimal.
Objective. The limited functionality of hand prostheses remains one of the main reasons behind the lack of its wide adoption by amputees. Indeed, while commercial prostheses can perform a reasonable number of grasps, they are often inadequate for manipulating the object once in hand. This lack of dexterity drastically restricts the utility of prosthetic hands. We aim at investigating a novel shared control strategy that combines autonomous control of forces exerted by a robotic hand with electromyographic (EMG) decoding to perform robust in-hand object manipulation. Approach. We conduct a 3-day long longitudinal study with 8 healthy subjects controlling a 16-degrees-of-freedom robotic hand to insert objects in boxes of various orientations. EMG decoding from forearm muscles enables subjects to move, proportionally and simultaneously, the fingers of the robotic hand. The desired object rotation is inferred using two EMG electrodes placed on the shoulder that record the activity of muscles responsible for elevation and depression. During the object interaction phase, the autonomous controller stabilizes and rotates the object to achieve the desired pose. In this study, we compare an incremental and a proportional shoulder-decoding method in combination with two state machine interfaces offering different levels of assistance. Main results. Results indicate that robotic assistance reduces the number of failures by $41\%$ and, when combined with an incremental shoulder EMG decoding, leads to faster task completion time (median=16.9s), compared to other control conditions. Training to use the assistive device is fast. After one session of practice, all subjects managed to achieve tasks with $50\%$ less failures. Significance. Shared control approaches that give some authority to an autonomous controller on-board the prosthesis are an alternative to control schemes relying on EMG decoding alone. This may improve the dexterity and versatility of robotic prosthetic hands (RPHs) for people with trans-radial amputation. By delegating control of forces to the prosthesis' on-board control, one speeds up reaction time and improves the precision of force control. Such a shared control mechanism may enable amputees to perform fine insertion tasks solely using their prosthetic hands. This may restore some of the functionality of the disabled arm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.