Brain-machine interfaces have been used to incorporate the user intention to trigger robotic devices by decoding movement onset from electroencephalography. Active neural participation is crucial to promote brain plasticity thus to enhance the opportunity of motor recovery. This paper presents the decoding of lower-limb movement-related cortical potentials with continuous classification and asynchronous detection. We executed experiments in a customized gait trainer, where 10 healthy subjects performed self-initiated ankle plantar flexion. We further analyzed the features, evaluated the impact of the limb side, and compared the proposed framework with other typical decoding methods. No significant differences were observed between the left and right legs in terms of neural signatures of movement and classification performance. We obtained a higher true positive rate, lower false positives, and comparable latencies with respect to the existing online detection methods. This paper demonstrates the feasibility of the proposed framework to build a closed-loop gait trainer. Potential applications include gait training neurorehabilitation in clinical trials.
Robotic assistance via motorized robotic arm manipulators can be of valuable assistance to individuals with upper-limb motor disabilities. Brain-computer interfaces (BCI) offer an intuitive means to control such assistive robotic manipulators. However, BCI performance may vary due to the non-stationary nature of the electroencephalogram (EEG) signals. It, hence, cannot be used safely for controlling tasks where errors may be detrimental to the user. Avoiding obstacles is one such task. As there exist many techniques to avoid obstacles in robotics, we propose to give the control to the robot to avoid obstacles and to leave to the user the choice of the robot behavior to do so a matter of personal preference as some users may be more daring while others more careful. We enable the users to train the robot controller to adapt its way to approach obstacles relying on BCI that detects error-related potentials (ErrP), indicative of the user’s error expectation of the robot’s current strategy to meet their preferences. Gaussian process-based inverse reinforcement learning, in combination with the ErrP-BCI, infers the user’s preference and updates the obstacle avoidance controller so as to generate personalized robot trajectories. We validate the approach in experiments with thirteen able-bodied subjects using a robotic arm that picks up, places and avoids real-life objects. Results show that the algorithm can learn user’s preference and adapt the robot behavior rapidly using less than five demonstrations not necessarily optimal.
Objective. When humans perceive an erroneous action, an EEG error-related potential (ErrP) is elicited as a neural response. ErrPs have been largely investigated in discrete feedback protocols, where actions are executed at discrete steps, to enable seamless brain-computer interaction. However, there are only a few studies that investigate ErrPs in continuous feedback protocols. The objective of the present study is to better understand the differences between two types of ErrPs elicited during continuous feedback protocols, where errors may occur either at predicted or unpredicted states. We hypothesize that ErrPs of the unpredicted state is associated with longer latency as it requires higher cognitive workload to evaluate actions compared to the predicted states. Approach. Participants monitored the trajectory of an autonomous cursor that occasionally made erroneous actions on its way to the target in two conditions, namely, predicted or unpredicted states. After characterizing the ErrP waveform elicited by erroneous actions in the two conditions, we performed single-trial decoding of ErrPs in both synchronous (i.e. time-locked to the onset of the erroneous action) and asynchronous manner. Furthermore, we explored the possibility to transfer decoders built with data of one of the conditions to the other condition. Main results. As hypothesized, erroneous actions at unpredicted states gave rise to ErrPs with higher latency than erroneous actions at predicted states, a correlate of higher cognitive effort in the former condition. Moreover, ErrP decoders trained in a given condition successfully transferred to the other condition with a slight loss of classification performance. This was the case for synchronous as well as asynchronous ErrP decoding, showing the invariability of ErrPs across conditions. Significance. These results advance the characterization of ErrPs during continuous feedback protocols, enlarging the potential use of ErrPs during natural operation of brain-controlled devices as it is not necessary to have different decoders for each kind of erroneous conditions.
Abstract-Error-related potentials (ErrP) have been increasingly studied in psychophysical experiments as well as for brainmachine interfacing. In the latter case, the generalisation capabilities of ErrP decoders is a crucial element to avoid frequent recalibration processes, thus increasing their usability. Previous studies have suggested that ErrP signals are rather stable across recording sessions. Also, studies using protocols of serial stimuli presentation show that these potentials do not change significantly with the presentation rate. Here we complement these studies by analysing the decoding generalisation capabilities. Using data from monitoring experiments, we evaluate how much the performance degrades when tested in a condition different than the one the decoder was trained with. Moreover, we compare different spatial filtering techniques to see which preprocessing steps yield less-sensitive features for ErrP decoding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.