OBJECTIVE To determine pharmacokinetic and pharmacodynamic properties of the injectable formulation of dexmedetomidine administered via the oral transmucosal (OTM) route to healthy dogs. ANIMALS 6 healthy dogs. PROCEDURES Injectable dexmedetomidine was administered IV (5 μg/kg) or via the OTM route (20 μg/kg) in a blinded, single-observer, randomized crossover study. Dogs received dexmedetomidine and a sham treatment at each administration. Serial blood samples were collected from a catheter in a saphenous vein. Heart rate, respiratory rate, and subjective sedation score were assessed for 24 hours after administration. Plasma samples were analyzed for dexmedetomidine concentrations by use of ultraperformance liquid chromatography–tandem mass spectrometry. RESULTS For the OTM route, the mean ± SD maximum plasma concentration was 3.8 ± 1.3 ng/mL, which was detected 73 ± 33 minutes after administration. The mean maximum concentration for the IV dose, when extrapolated to the time of administration, was 18.6 ± 3.3 ng/mL. The mean terminal-phase half-life was 152 ± 146 minutes and 36 ± 6 minutes for OTM and IV administration, respectively. After IV administration, total clearance was 8.0 ± 1.6 mL/min/kg and volume of distribution at steady state was 371 ± 72 mL/kg. Bioavailability for OTM administration of dexmedetomidine was 11.2 ± 4.5%. Peak sedation scores did not differ significantly between routes of administration. Decreases in heart rate, respiratory rate, and peak sedation score were evident sooner after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE OTM administration of the injectable formulation of dexmedetomidine resulted in a similar degree of sedation and prolonged duration of action, compared with results for IV administration, despite relatively low bioavailability.
OBJECTIVE To evaluate the sedative and cardiorespiratory effects of IM administration of alfaxalone and butorphanol combined with acepromazine, midazolam, or dexmedetomidine in dogs. ANIMALS 6 young healthy mixed-breed hounds. PROCEDURES Dogs received each of 3 treatments (alfaxalone [2 mg/kg] and butorphanol [0.4 mg/kg] combined with acepromazine [0.02 mg/kg; AB-ace], midazolam [0.2 mg/kg; AB-mid], or dexmedetomidine [0.005 mg/kg; AB-dex], IM) in a blinded, randomized crossover-design study with a 1-week washout period between treatments. Sedation scores and cardiorespiratory variables were recorded at predetermined time points. Data were analyzed by use of mixed-model ANOVA and linear generalized estimating equations with post hoc adjustments. RESULTS All treatments resulted in moderate to deep sedation (median score, ≥ 15/21) ≤ 5 minutes after injection. Sedation scores did not differ among treatments until the 40-minute time point, when the score was higher for AB-dex than for other treatments. Administration of AB-dex resulted in median scores reflecting deep sedation until 130 minutes, versus 80 and 60 minutes for AB-ace and AB-mid, respectively, after injection. Heart rate, cardiac output, and oxygen delivery decreased significantly after AB-dex, but not AB-ace or AB-mid administration. Respiratory variables remained within clinically acceptable ranges after all treatments. Undesirable recovery characteristics were observed in 4 dogs after AB-mid treatment. Four dogs required atipamezole administration 180 minutes after AB-dex injection. CONCLUSIONS AND CLINICAL RELEVANCE All protocols produced reliable sedation. The results indicated that in young, healthy dogs, AB-mid may produce undesirable recovery characteristics; AB-dex treatment caused cardiovascular depression and should be used with caution.
OBJECTIVE To evaluate the pharmacokinetics and pharmacodynamics of naloxone hydrochloride in dogs following intranasal (IN) and IV administration. ANIMALS 6 healthy adult mixed-breed dogs. PROCEDURES In a blinded crossover design involving 2 experimental periods separated by a washout period (minimum of 7 days), dogs were randomly assigned to receive naloxone IN (4 mg via a commercially available fixed-dose naloxone atomizer; mean ± SD dose, 0.17 ± 0.02 mg/kg) or IV (0.04 mg/kg) in the first period and then the opposite treatment in the second period. Plasma naloxone concentrations, dog behavior, heart rate, and respiratory rate were evaluated for 24 hours/period. RESULTS Naloxone administered IN was well absorbed after a short lag time (mean ± SD, 2.3 ± 1.4 minutes). Mean maximum plasma concentration following IN and IV administration was 9.3 ± 2.5 ng/mL and 18.8 ± 3.9 ng/mL, respectively. Mean time to maximum concentration following IN administration was 22.5 ± 8.2 minutes. Mean terminal half-life after IN and IV administration was 47.4 ± 6.7 minutes and 37.0 ± 6.7 minutes, respectively. Mean bioavailability of naloxone administered IN was 32 ± 13%. There were no notable changes in dog behavior, heart rate, or respiratory rate following naloxone administration by either route. CONCLUSIONS AND CLINICAL RELEVANCE Use of a naloxone atomizer for IN naloxone administration in dogs may represent an effective alternative to IV administration in emergency situations involving opioid exposure. Future studies are needed to evaluate the efficacy of IN naloxone administration in dogs with opioid intoxication, including a determination of effective doses.
OBJECTIVE To determine the effect of oral administration of gabapentin (20 mg/kg) on the minimum alveolar concentration (MAC) of isoflurane in dogs. ANIMALS 6 healthy adult dogs (3 males and 3 females with a mean ± SD body weight of 24.8 ± 1.3 kg). PROCEDURES Each dog was anesthetized twice. Dogs were initially assigned to 1 of 2 treatments (gabapentin [20 mg/kg, PO] followed 2 hours later by anesthesia maintained with isoflurane or anesthesia maintained with isoflurane alone). A minimum of 7 days later, dogs received the other treatment. The MAC of isoflurane was determined by use of an iterative bracketing technique with stimulating electrodes placed in the maxillary buccal mucosa. Hemodynamic variables and vital parameters were recorded at the lowest end-tidal isoflurane concentration at which dogs did not respond to the stimulus. Effect of treatment on outcome variables was analyzed by use of a paired t test. RESULTS Mean ± SD MAC of isoflurane was significantly lower when dogs received gabapentin and isoflurane (0.71 ± 0.12%) than when dogs received isoflurane alone (0.91 ± 0.26%). Mean reduction in MAC of isoflurane was 20 ± 14%. Hemodynamic variables did not differ significantly between treatments. Mean time to extubation was significantly less when dogs received gabapentin and isoflurane (6 ± 4 minutes) than when dogs received isoflurane alone (23 ± 15 minutes). CONCLUSIONS AND CLINICAL RELEVANCE Oral administration of gabapentin 2 hours before anesthesia maintained with isoflurane had a MAC-sparing effect with no effect on hemodynamic variables or vital parameters of dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.