The breakthroughs achieved in green solvents promote the emergence of therapeutic deep eutectic solvents (THEDES), which possess intriguing possible applications in the biomedical field. Herein, the main aim was to unravel the biomedical potential of hydrophobic THEDES based in menthol and saturated fatty acids with different chain lengths (e.g., stearic acid (SA), myristic acid (MA), and lauric acid (LA)). Our comprehensive strategy resulted in the thermophysical characterization of different formulations, which allow one to identify the most suitable molar ratio, as well as the intermolecular interactions behind the successful formation of THEDES. The evaluation of their biological performance was also performed toward bacteria and HaCaT cells. Among the different formulations of THEDES, the one based on menthol and SA establishes stronger hydrogen bonding interactions, being also the most promising formulation because it did not elicit any relevant cytotoxicity, and potentiated wound healing, while presenting antibacterial properties against Staphylococcus epidermis and Staphylococcus aureus strains, some of which were methicillin resistant. This work provides clues on the future use of THEDES based on menthol:SA in wound dressings.
Deep eutectic solvents have been recently reported as an interesting alternative to improve the therapeutic efficacy of conventional drugs, hence called therapeutic deep eutectic solvents (THEDES). The main objective of this work was to evaluate the potential of limonene (LIM) based THEDES as new possible systems for cancer treatment. LIM is known to have antitumor activity, however it is highly toxic and cell viability is often compromised, thus this compound is not selective towards cancer cells. Different THEDES based on LIM were developed to unravel the anticancer potential of such systems. THEDES were prepared by gently mixing saturated fatty acids menthol or ibuprofen (IBU) with LIM. Successful THEDES were obtained for Menthol:LIM (1:1), CA:LIM (1:1), IBU:LIM (1:4) and IBU:LIM(1:8). The results indicate that all the THEDES present antiproliferative properties, but IBU:LIM (1:4) was the only formulation able to inhibit HT29 proliferation without comprising cell viability. Therefore, IBU:LIM (1:4) was the formulation selected for further assessment of anticancer properties. The results suggest that the mechanism of action of LIM:IBU (1:4) is different from isolated IBU and LIM, which suggest the synergetic effect of DES. In this work, we unravel a methodology to tune the selectivity of LIM towards HT29 cell line without compromising cell viability of healthy cells. We demonstrate furthermore that coupling LIM with IBU leads also to an enhancement of the anti-inflammatory activity of IBU, which may be important in anti-cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.