The application of nanotechnology in different areas of food packaging is an emerging field that will grow rapidly in the coming years. Advances in food safety have yielded promising results leading to the development of intelligent packaging (IP). By these containers, it is possible to monitor and provide information of the condition of food, packaging, or the environment. This article describes the role of the different concepts of intelligent packaging. It is possible that this new technology could reach enhancing food safety, improving pathogen detection time, and controlling the quality of food and packaging throughout the supply chain.
Abstract:The behavioural diagnostics of bearings play an essential role in the management of several rotation machine systems. However, current diagnostic methods do not deliver satisfactory results with respect to failures in variable speed rotational phenomena. In this paper, we consider the Shannon entropy as an important fault signature pattern. To compute the entropy, we propose combining stationary wavelet transform and singular value decomposition. The resulting feature extraction method, that we call stationary wavelet singular entropy (SWSE), aims to improve the accuracy of the diagnostics of bearing failure by finding a small number of high-quality fault signature patterns. The features extracted by the SWSE are then passed on to a kernel extreme learning machine (KELM) classifier. The proposed SWSE-KELM algorithm is evaluated using two bearing vibration signal databases obtained from Case Western Reserve University. We compare our SWSE feature extraction method to other well-known methods in the literature such as stationary wavelet packet singular entropy (SWPSE) and decimated wavelet packet singular entropy (DWPSE). The experimental results show that the SWSE-KELM consistently outperforms both the SWPSE-KELM and DWPSE-KELM methods. Further, our SWSE method requires fewer features than the other two evaluated methods, which makes our SWSE-KELM algorithm simpler and faster.
Abstract:Intelligence condition monitoring based on vibration signal analysis plays a key role in improving rolling bearings failure diagnosis in mechanical transmission systems. Unexpected failures in the bearings may cause machine breakdowns that are very expensive for the industry. Hence, this study proposes a method to the rolling element bearing failure diagnosis which is based on an extreme learning machine (ELM) algorithm combined with stationary wavelet transform (SWT) and singular value decomposition (SVD). The SWT is used to separate the vibration signals into a series of wavelet component signals. Then, the obtained wavelet components matrix is decomposed by means of a SVD method to obtain a set of wavelet singular values. Finally, the wavelet singular values are used as input to the extreme learning machine for classification among ten different bearing failure types. Obtained results using the proposed model shown high accuracy of diagnosis under variable speed condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.