Abstract:The behavioural diagnostics of bearings play an essential role in the management of several rotation machine systems. However, current diagnostic methods do not deliver satisfactory results with respect to failures in variable speed rotational phenomena. In this paper, we consider the Shannon entropy as an important fault signature pattern. To compute the entropy, we propose combining stationary wavelet transform and singular value decomposition. The resulting feature extraction method, that we call stationary wavelet singular entropy (SWSE), aims to improve the accuracy of the diagnostics of bearing failure by finding a small number of high-quality fault signature patterns. The features extracted by the SWSE are then passed on to a kernel extreme learning machine (KELM) classifier. The proposed SWSE-KELM algorithm is evaluated using two bearing vibration signal databases obtained from Case Western Reserve University. We compare our SWSE feature extraction method to other well-known methods in the literature such as stationary wavelet packet singular entropy (SWPSE) and decimated wavelet packet singular entropy (DWPSE). The experimental results show that the SWSE-KELM consistently outperforms both the SWPSE-KELM and DWPSE-KELM methods. Further, our SWSE method requires fewer features than the other two evaluated methods, which makes our SWSE-KELM algorithm simpler and faster.
We present a hybridization of two different approaches applied to the well-known Capacitated Facility Location Problem (CFLP). The Artificial Bee algorithm (BA) is used to select a promising subset of locations (warehouses) which are solely included in the Mixed Integer Programming (MIP) model. Next, the algorithm solves the subproblem by considering the entire set of customers. The hybrid implementation allows us to bypass certain inherited weaknesses of each algorithm, which means that we are able to find an optimal solution in an acceptable computational time. In this paper we demonstrate that BA can be significantly improved by use of the MIP algorithm. At the same time, our hybrid implementation allows the MIP algorithm to reach the optimal solution in a considerably shorter time than is needed to solve the model using the entire dataset directly within the model. Our hybrid approach outperforms the results obtained by each technique separately. It is able to find the optimal solution in a shorter time than each technique on its own, and the results are highly competitive with the state-of-the-art in large-scale optimization. Furthermore, according to our results, combining the BA with a mathematical programming approach appears to be an interesting research area in combinatorial optimization.
We solve a novel inventory-location model with a stochastic capacity constraint based on a periodic inventory control (ILM-PR) policy. The ILM-PR policy implies several changes with regard to other previous models proposed in the literature, which consider continuous review as their inventory policy. One of these changes is the inclusion of the undershoot concept, which has not been considered in previous ILM models in the literature. Based on our model, we are able to design a distribution network for a two-level supply chain, addressing both warehouse location and customer assignment decisions, whilst taking into consideration several aspects of inventory planning, in particular, evaluating the impact of the inventory control review period on the network configuration and system costs. Because the model is a very hard-to solve combinatorial nonlinear optimisation problem, we implemented two heuristics to solve it, namely, Tabu Search and Particle Swarm Optimisation. These approaches were tested over small instances in which they were able to find the optimal solution in just a few seconds. Because the model is a new one, a set of medium-size instances is provided that can be useful as a benchmark in future research. The heuristics showed a good convergence rate when applied to those instances. The results confirm that decision making over the inventory control policy has effects on the distribution network design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.