It is nearly three decades since the world recognized the need for a global multilateral treaty aiming to address accelerating biodiversity loss. However, biodiversity continues to decline at a concerning rate. Drawing on lessons from the implementation of the current strategic plan of the Convention on Biological Diversity and the 2010 Aichi Targets, we highlight three interlinked core areas, which require attention and improvement in the development of the post-2020 Biodiversity Framework under the Convention on Biological Diversity. They are: (1) developing robust theories of change which define agreed, adaptive plans for achieving targets; (2) using models to evaluate assumptions and effectiveness of different plans and targets; and (3) identifying the common but differentiated responsibilities of different actors/states/countries within these plans. We demonstrate how future multilateral agreements must not focus only on what needs to be done but also on how it should be done, using measurable steps, which make sense at the scales at which biodiversity change happens.
Linear infrastructures, especially roads, affect the integrity of natural habitats worldwide. Roads act as a barrier to animal movement, cause mortality, decrease gene flow and increase the probability of local extinctions, particularly for arboreal species. Arboreal wildlife bridges increase connectivity of fragmented forests by allowing wildlife to safely traverse roads. However, the majority of studies about such infrastructure are from Australia, while information on lowland tropical rainforest systems in Meso and South America remains sparse. To better facilitate potential movement between forest areas for the arboreal wildlife community of Costa Rica’s Osa Peninsula, we installed and monitored the early use of 12 arboreal wildlife bridges of three different designs (single rope, double rope, and ladder bridges). We show that during the first 6 months of monitoring via camera traps, 7 of the 12 bridges were used, and all bridge designs experienced wildlife activity (mammals crossing and birds perching). A total of 5 mammal species crossing and 3 bird species perching were observed. In addition to preliminary results of wildlife usage, we also provide technical information on the bridge site selection process, bridge construction steps, installation time, and overall associated costs of each design. Finally, we highlight aspects to be tested in the future, including additional bridge designs, monitoring approaches, and the use of wildlife attractants.
Land-use change is one of the major drivers of biodiversity loss by introducing environmental modifications, which excludes native species unable to adapt to the novel conditions. Grasslands are among the most threatened biomes; understanding the influence of different land-use types on native species is crucial to achieving sustainable management policies. We hypothesized that land-use types that partially conserve the original vegetation cover would show higher taxonomic and functional diversity and similarity with native assemblages than land-use types that replace the original vegetation cover. We compared the taxonomic and functional alpha and beta diversity of spider assemblages between soybean crops, eucalypt plantations, and cattle fields with seminatural grasslands. Through null models, we assessed the standardized effect sizes to test differences in the strength of environmental filtering among land-use types. Environmental changes introduced by different land-use types resulted in assemblages differentiated in species and trait composition, taxonomically and functionally impoverished with respect to seminatural grasslands. All land-use types drove species replacement and trait loss and replacement of grassland spiders. Each land-use showed a characteristic species and trait composition. Most of the grassland traits were not lost but were under or over-represented according to the land-use type. Only in soybean crops the formation of spider communities would be mainly driven by environmental filtering. Changes in land-use decreased species diversity and modified the composition of spider species and functional traits leading to differentiated spider assemblages. As spider species and traits varied among land-uses, a mitigation measure against grasslands biodiversity loss could be the development of productive landscapes with a mosaic of land-use types, as each of them would provide microhabitats for species with different requirements. Because land-use types mainly led to the rearrangement of grassland functional trait values, most of spider functions might be conserved in mosaics of land-use types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.