Tree plantations have become one of the fastest-growing land uses and their impact on biodiversity was evaluated mainly at the taxonomic level. The aim of this study was to analyze environmental changes after the Eucalyptus plantation in an area originally covered by natural grasslands, taking into account the alpha and beta (taxonomic and functional) diversity of plant communities. We selected nine plantation ages, along a 12 years chronosequence, with three replicates per age and three protected grasslands as the original situation. At each replicate, we established three plots to measure plant species cover, diversity and environmental variables. Results showed that species richness, and all diversity indices, significantly declined with increasing plantation age. Canopy cover, soil pH, and leaf litter were the environmental drivers that drove the decrease in taxonomic and functional diversity of plants through the forest chronosequence. Based on the path analyses results, canopy cover had an indirect effect on plant functional diversity, mediated by leaf litter depth, soil pH, and plant species richness. The high dispersal potential, annual, barochorous, and zoochorous plant species were the functional traits more affected by the eucalypt plantations. We recommend two management practices: reducing forest densities to allow higher light input to the understory and, due to the fact that leaf litter was negatively associated with all diversity facets, we recommend reducing their accumulation or generate heterogeneity in its distribution to enhance biodiversity.
Land-use change is one of the major drivers of biodiversity loss by introducing environmental modifications, which excludes native species unable to adapt to the novel conditions. Grasslands are among the most threatened biomes; understanding the influence of different land-use types on native species is crucial to achieving sustainable management policies. We hypothesized that land-use types that partially conserve the original vegetation cover would show higher taxonomic and functional diversity and similarity with native assemblages than land-use types that replace the original vegetation cover. We compared the taxonomic and functional alpha and beta diversity of spider assemblages between soybean crops, eucalypt plantations, and cattle fields with seminatural grasslands. Through null models, we assessed the standardized effect sizes to test differences in the strength of environmental filtering among land-use types. Environmental changes introduced by different land-use types resulted in assemblages differentiated in species and trait composition, taxonomically and functionally impoverished with respect to seminatural grasslands. All land-use types drove species replacement and trait loss and replacement of grassland spiders. Each land-use showed a characteristic species and trait composition. Most of the grassland traits were not lost but were under or over-represented according to the land-use type. Only in soybean crops the formation of spider communities would be mainly driven by environmental filtering. Changes in land-use decreased species diversity and modified the composition of spider species and functional traits leading to differentiated spider assemblages. As spider species and traits varied among land-uses, a mitigation measure against grasslands biodiversity loss could be the development of productive landscapes with a mosaic of land-use types, as each of them would provide microhabitats for species with different requirements. Because land-use types mainly led to the rearrangement of grassland functional trait values, most of spider functions might be conserved in mosaics of land-use types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.