Notch receptors and their ligands contribute to many developmental systems, but it is not apparent how they function after birth, as their null mutants develop severe defects during embryogenesis. Here we used the Cre-loxP system to delete the Delta-like 1 gene (Dll1) after birth and demonstrated the complete disappearance of splenic marginal zone B cells in Dll1-null mice. In contrast, T cell development was unaffected. These results demonstrated that Dll1 was dispensable as a ligand for Notch1 at the branch point of T cell-B cell development but was essential for the generation of marginal zone B cells. Thus, Notch signaling is essential for lymphocyte development in vivo, but there is a redundancy of Notch-Notch ligand signaling that can drive T cell development within the thymus.
'Vascular endothelial growth factor-A (VEGF-A) blockade has been recently validated as an effective strategy for the inhibition of new blood vessel growth in cancer and ocular pathologies. However, several studies have also shown that anti-VEGF therapy may not be as effective in the treatment of established unwanted blood vessels, suggesting they may become less dependent on VEGF-A for survival. The VEGF-A dependence of vessels may be related to the presence of vascular mural cells (pericytes or smooth muscle cells). Mural cell recruitment to the growing endothelial tube is regulated by platelet-derived growth factor-B (PDGF-B) signaling, and interference with this pathway causes disruption of endothelial cell-mural cell interactions and loss of mural cells. We have investigated the basis of blood vessel dependence on VEGF-A in models of corneal and choroidal neovascularization using a combination of reagents (an anti-VEGF aptamer and an anti-PDGFR-beta antibody) to inhibit both the VEGF-A and PDGF-B signaling pathways. We demonstrate that neovessels become refractory to VEGF-A deprivation over time. We also show that inhibition of both VEGF-A and PDGF-B signaling is more effective than blocking VEGF-A alone at causing vessel regression in multiple models of neovascular growth. These findings provide insight into blood vessel growth factor dependency and validate a combination therapy strategy for enhancing the current treatments for ocular angiogenic disease.
The thymic microenvironment is required for T cell development in vivo. However, in vitro studies have shown that when hematopoietic progenitors acquire Notch signaling via Delta-like (Dll)1 or Dll4, they differentiate into the T cell lineage in the absence of a thymic microenvironment. It is not clear, however, whether the thymus supports T cell development specifically by providing Notch signaling. To address this issue, we generated mice with a loxP-flanked allele of Dll4 and induced gene deletion specifically in thymic epithelial cells (TECs). In the thymus of mutant mice, the expression of Dll4 was abrogated on the epithelium, and the proportion of hematopoietic cells bearing the intracellular fragment of Notch1 (ICN1) was markedly decreased. Corresponding to this, CD4 CD8 double-positive or single-positive T cells were not detected in the thymus. Further analysis showed that the double-negative cell fraction was lacking T cell progenitors. The enforced expression of ICN1 in hematopoietic progenitors restored thymic T cell differentiation, even when the TECs were deficient in Dll4. These results indicate that the thymus-specific environment for determining T cell fate indispensably requires Dll4 expression to induce Notch signaling in the thymic immigrant cells.
Nonviral vectors consisting of integrin-targeting peptide/DNA (ID) complexes have the potential for widespread application in gene therapy. The transfection efficiency of this vector, however, has been limited by endosomal degradation. We now report that lipofectin (L) incorporated into the ID complexes enhances integrin-mediated transfection, increasing luciferase expression by more than 100-fold. The transfection efficiency of Lipofectin/Integrin-binding peptide/DNA (LID) complexes, assessed by beta-galactosidase reporter gene expression and X-gal staining, was improved from 1% to 10% to over 50% for three different cell lines, and from 0% to approximately 25% in corneal endothelium in vitro. Transfection complexes have been optimized with respect to their transfection efficiency and we have investigated their structure, function, and mode of transfection. Both ID and LID complexes formed particles, unlike the fibrous network formed by lipofectin/DNA complexes (LD). Integrin-mediated transfection by LID complexes was demonstrated by the substantially lower transfection efficiency of LKD complexes in which the integrin-biding peptide was substituted for K16 (K). Furthermore, the transfection efficiency of complexes was shown to be dependent on the amount of integrin-targeting ligand in the complex. Finally, a 34% reduction in integrin-mediated transfection efficiency by LID complexes was achieved with a competing monoclonal antibody. The role of lipofectin in LID complexes appears, therefore, to be that of a co-factor, enhancing the efficiency of integrin-mediated transfection. The mechanism of enhancement is likely to involve a reduction in the extent of endosomal degradation of DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.