Agrobacterium is widely considered to be the only bacterial genus capable of transferring genes to plants. When suitably modified, Agrobacterium has become the most effective vector for gene transfer in plant biotechnology. However, the complexity of the patent landscape has created both real and perceived obstacles to the effective use of this technology for agricultural improvements by many public and private organizations worldwide. Here we show that several species of bacteria outside the Agrobacterium genus can be modified to mediate gene transfer to a number of diverse plants. These plant-associated symbiotic bacteria were made competent for gene transfer by acquisition of both a disarmed Ti plasmid and a suitable binary vector. This alternative to Agrobacterium-mediated technology for crop improvement, in addition to affording a versatile 'open source' platform for plant biotechnology, may lead to new uses of natural bacteria-plant interactions to achieve plant transformation.
The appellative “common heritage of mankind” is often used as a description of the property domain that governed plant genetic resources (PGR) at an international level up until the end of the twentieth century. However, the concept is rarely elaborated on. In this article we explore the origins of common property in PGR and the shifting content and shape of the genetic commons over the past several decades. Using the theoretical framework of diverse common property regimes developed by Peter Drahos, we chart the way in which the emergence and interaction of various international regulatory regimes related to PGR reshape common property spaces, rights and obligations. We argue that these international agreements do not regulate a single property domain in isolation, but rather modify the content and boundaries of the complex set of property domains that apply to PGR: private, state, common and public. More than a theoretical conundrum, we show that any realistic appraisal of the implementation of the international regulatory regimes in relation to PGR must acknowledge the conflicting and complex dynamics of these interrelated property domains, as well as the way in which they are being put into place on the ground.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.