The teleost fish Leporinus obtusidens (piava) was exposed to different concentrations of Roundup, a commercial herbicide formulation containing glyphosate (0, 1, or 5 mg L(-1)), for 90 days. Acetylcholinesterase (AChE) activity was verified in brain and muscle. Hepatic and muscular metabolic parameters as well as some hematological parameters were determined. The results showed that brain AChE activity was significantly decreased in fish exposed to 5 mg L(-1) Roundup, whereas muscular AChE activity was not altered. Both Roundup concentrations significantly decreased liver glycogen without altering the muscle glycogen content. Hepatic glucose levels were reduced only in fish exposed to 5 mg L(-1) Roundup. Lactate levels in the liver and muscle significantly increased in fish exposed to both Roundup concentrations. Hepatic protein content remained constant at 1 mg L(-1) but increased at 5 mg L(-1) Roundup. In the muscle however, protein content decreased with increasing exposure concentration. The herbicide exposure produced a decrease in hematological parameters at both concentrations tested. The majority of observed effects occur at environmental relevant concentrations, and in summary, the results show that Roundup affects brain AChE activity as well as metabolic and hematologic parameters of piavas. Thus, we can suggest that long-term exposure to Roundup causes metabolic disruption in Leporinus obtusidens.
Thiamine is an important cofactor of metabolic enzymes, and its deficiency leads to cardiovascular dysfunction. First, we characterized the metabolic status measuring resting oxygen consumption rate and lactate blood concentration after 35 days of thiamine deficiency (TD). The results pointed to a decrease in resting oxygen consumption and a twofold increase in blood lactate. Confocal microscopy showed that intracellular superoxide (approximately 40%) and H(2)O(2) (2.5 times) contents had been increased. In addition, biochemical activities and protein expression of SOD, glutathione peroxidase, and catalase were evaluated in hearts isolated from rats submitted to thiamine deprivation. No difference in SOD activity was detected, but protein levels were found to be increased. Catalase activity increased 2.1 times in TD hearts. The observed gain in activity was attended by an increased catalase protein level. However, a marked decrease in glutathione peroxidase activity (control 435.3 + or - 28.6 vs. TD 199.4 + or - 30.2 nmol NADPH x min(-1) x ml(-1)) was paralleled by a diminution in the protein levels. Compared with control hearts, we did observe a greater proportion of apoptotic myocytes by TdT-mediated dUTP nick end labeling (TUNEL) and caspase-3 reactivity techniques. These results indicate that during TD, reactive oxygen species (ROS) production may be enhanced as a consequence of the installed acidosis. The perturbation in the cardiac myocytes redox balance was responsible for the increase in apoptosis.
Digestive enzymes activity influence feed utilization by fish, and its understanding is important to optimize diet formulation. This study reports the digestive enzyme activities of jundiá juveniles fed diets with protein sources. Fish were fed six experimental diets for 90 days: MBY (meat and bone meal + sugar cane yeast), SY (soybean meal + sugar cane yeast), S (soybean meal), MBS (meat and bone meal + soybean meal), FY (fish meal + sugar cane yeast) and FS (fish meal + soybean meal), and then sampled every 30 days and assayed in two intestine sections for digestive enzymes -trypsin, chymotrypsin and amylase -activities; gastric protease was assayed in the stomach. Digestive and hepatosomatic index, intestinal quotient, digestive tract length and weight gain were also measured. Trypsin and chymotrypsin activities were higher (p < 0.0001) in fish fed diets containing animal protein sources (MBY, MBS, FY and FS diets). Alkaline proteases were negatively affected by dietary soybean meal in the SY and S diets. Amylase activity had greater variation between diets and intestine sections. Fish fed MBY and MBS diets showed higher gastric protease activity (p < 0.0001). Weight gains were higher in fish fed the MBS and FS diets (p < 0.05). Highest values (p < 0.05) of digestive tract length were observed in fish fed MBS and FY diets, but no correlation with enzymes activities was found. Hepatosomatic index (HSI) was affected by diet composition. Dietary composition influenced digestive enzymes activities of jundiá. Key words: digestion, nutrition, soybean meal, meat and bone meal, fish mealFontes protéicas e atividade de enzimas digestivas em jundiás (Rhamdia quelen) RESUMO: As enzimas digestivas influenciam a utilização dos alimentos em peixes, e seu conhecimento é importante para otimizar a formulação de dietas. Este trabalho descreve a atividade de enzimas digestivas em juvenis de jundiá alimentados com fontes protéicas. Os peixes foram alimentados com seis dietas (90 dias): MBY (farinha de carne e ossos + levedura de cana), SY (farelo de soja + levedura de cana), S (farelo de soja), MBS (farinha de carne e ossos + farelo de soja), FY (farinha de peixe + levedura de cana) e FS (farinha de peixe + farelo de soja). A cada 30 dias, foram analisadas as enzimas digestivas (tripsina, quimiotripsina e amilase) no intestino. No estômago, foi mensurada a protease ácida. Foram estimados os índices digestivo e hepato-somático, quociente intestinal, comprimento do trato digestório e ganho em peso.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.