The impact of moving from conventional to precision feeding systems in growing-finishing pig operations on animal performance, nutrient utilization, and body and carcass composition was studied. Fifteen animals per treatment for a total of 60 pigs of 41.2 (SE = 0.5) kg of BW were used in a performance trial (84 d) with 4 treatments: a 3-phase (3P) feeding program obtained by blending fixed proportions of feeds A (high nutrient density) and B (low nutrient density); a 3-phase commercial (COM) feeding program; and 2 daily-phase feeding programs in which the blended proportions of feeds A and B were adjusted daily to meet the estimated nutritional requirements of the group (multiphase-group feeding, MPG) or of each pig individually (multiphase-individual feeding, MPI). Daily feed intake was recorded each day and pigs were weighed weekly during the trial. Body composition was assessed at the beginning of the trial and every 28 d by dual-energy X-ray densitometry. Nitrogen and phosphorus excretion was estimated as the difference between retention and intake. Organ, carcass, and primal cut measurements were taken after slaughter. The COM feeding program reduced (P < 0.05) ADFI and improved G:F rate in relation to other treatments. The MPG and MPI programs showed values for ADFI, ADG, G:F, final BW, and nitrogen and phosphorus retention that were similar to those obtained for the 3P feeding program. However, compared with the 3P treatment, the MPI feeding program reduced the standardized ileal digestible lysine intake by 27%, the estimated nitrogen excretion by 22%, and the estimated phosphorus excretion by 27% (P < 0.05). Organs, carcass, and primal cut weights did not differ among treatments. Feeding growing-finishing pigs with daily tailored diets using precision feeding techniques is an effective approach to reduce nutrient excretion without compromising pig performance or carcass composition.
The teleost fish Leporinus obtusidens (piava) was exposed to different concentrations of Roundup, a commercial herbicide formulation containing glyphosate (0, 1, or 5 mg L(-1)), for 90 days. Acetylcholinesterase (AChE) activity was verified in brain and muscle. Hepatic and muscular metabolic parameters as well as some hematological parameters were determined. The results showed that brain AChE activity was significantly decreased in fish exposed to 5 mg L(-1) Roundup, whereas muscular AChE activity was not altered. Both Roundup concentrations significantly decreased liver glycogen without altering the muscle glycogen content. Hepatic glucose levels were reduced only in fish exposed to 5 mg L(-1) Roundup. Lactate levels in the liver and muscle significantly increased in fish exposed to both Roundup concentrations. Hepatic protein content remained constant at 1 mg L(-1) but increased at 5 mg L(-1) Roundup. In the muscle however, protein content decreased with increasing exposure concentration. The herbicide exposure produced a decrease in hematological parameters at both concentrations tested. The majority of observed effects occur at environmental relevant concentrations, and in summary, the results show that Roundup affects brain AChE activity as well as metabolic and hematologic parameters of piavas. Thus, we can suggest that long-term exposure to Roundup causes metabolic disruption in Leporinus obtusidens.
RESUMO
O objetivo deste trabalho foi verificar o crescimento e a composição de filés de juvenis de jundiá (Rhamdia quelen) alimentados com diferentes fontes protéicas, durante 60 dias.Utilizaram-se 540 peixes (peso médio inicial=15,00±0,62g, comprimento total inicial=11,98±0,35cm)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.