The incidence of melanoma is increasing rapidly, with advanced lesions generally failing to respond to conventional chemotherapy. Here, we utilized DNA microarray-based gene expression profiling techniques to identify molecular determinants of melanoma progression within a unique panel of isogenic human melanoma cell lines. When a poorly tumorigenic cell line, derived from an early melanoma, was compared with two increasingly aggressive derivative cell lines, the expression of 66 genes was significantly changed. A similar pattern of differential gene expression was found with an independently derived metastatic cell line. We further examined these melanoma progression-associated genes via use of a tailored TaqMan Low Density Array (LDA), representing the majority of genes within our cohort of interest. Considerable concordance was seen between the transcriptomic profiles determined by DNA microarray and TaqMan LDA approaches. A range of novel markers were identified that correlated here with melanoma progression. Most notable was TSPY, a Y chromosome-specific gene that displayed extensive down-regulation in expression between the parental and derivative cell lines. Examination of a putative CpG island within the TSPY gene demonstrated that this region was hypermethylated in the derivative cell lines, as well as metastatic melanomas from male patients. Moreover, treatment of the derivative cell lines with the DNA methyltransferase inhibitor, 2'-deoxy-5-azacytidine (DAC), restored expression of the TSPY gene to levels comparable with that found in the parental cells. Additional DNA microarray studies uncovered a subset of 13 genes from the above-mentioned 66 gene cohort that displayed re-activation of expression following DAC treatment, including TSPY, CYBA and MT2A. DAC suppressed tumor cell growth in vitro. Moreover, systemic treatment of mice with DAC attenuated growth of melanoma xenografts, with consequent re-expression of TSPY mRNA. Overall, our data support the hypothesis that multiple genes are targeted, either directly or indirectly, by DNA hypermethylation during melanoma progression.
BACKGROUND: Insulin-like growth factor 1 (IGF1) promotes breast cancer and disease progression. Bioavailability of IGF1 is modulated by IGF-binding proteins (IGFBPs). IGFBP4 inhibits IGF1 activity but cleavage by pregnancy-associated plasma protein-A (PAPP-A) protease releases active IGF1. METHODS: Expression of IGF pathway components and PAPP-A was assessed by western blot or RT -PCR. IGFBP4 (dBP4) resistant to PAPP-A cleavage, but retaining IGF-binding capacity, was used to block IGF activity in vivo. 4T1.2 mouse mammary adenocarcinoma cells transfected with empty vector, vector expressing wild-type IGFBP4 or vector expressing dBP4 were implanted in the mammary fat pad of BALB/c mice and tumour growth was assessed. Tumour angiogenesis and endothelial cell apoptosis were assessed by immunohistochemistry. RESULTS: 4T1.2 cells expressed the IGF1R receptor and IGFBP4. PAPP-A was expressed within mammary tumours but not by 4T1.2 cells. Proliferation and vascular endothelial growth factor (VEGF) production by 4T1.2 cells was increased by IGF1(E3R) (recombinant IGF1 resistant to binding by IGFBPs) but not by wild-type IGF1. IGF1-stimulated microvascular endothelial cell proliferation was blocked by recombinant IGFBP4. 4T1.2 tumours expressing dBP4 grew significantly more slowly than controls or tumours expressing wild-type IGFBP4. Inhibition of tumour growth by dBP4 was accompanied by the increased endothelial cell apoptosis. CONCLUSION: Protease-resistant IGFBP4 blocks IGF activity, tumour growth and angiogenesis .
Feature extraction in the analysis of proteomic mass spectra by X. Wang et al., vol. 6, issue 7, pp. 2095-2100. DOI 10.1002 Please note that Equation 3 on page 2096 of this article should read:Glutamine regulates the expression of proteins with a potential health-promoting effect in human intestinal Caco-2 cells by K. Lenaerts et al., vol. 6, issue 8, pp. 2454-2464. DOI 10.1002 Please note that in Table 1 The last line of the abstract was supposed to read: "may contribute to the observed mitogenic and anti-apoptotic paracrine activity of p21-expressing cells" and NOT p22-expressing cells as it says.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.