Background. Current malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too complex for field deployment. A new commercial molecular assay based on loop-mediated isothermal amplification (LAMP) was assessed for field use.Methods. Malaria LAMP (Eiken Chemical, Japan) was evaluated for samples from 272 outpatients at a rural Ugandan clinic and compared with expert microscopy, nested PCR, and quantitative PCR (qPCR). Two technicians performed the assay after 3 days of training, using 2 alternative blood sample–preparation methods and visual interpretation of results by fluorescence assay.Results. Compared with 3-well nested PCR, the sensitivity of both LAMP and single-well nested PCR was 90%; the microscopy sensitivity was 51%. For samples with a Plasmodium falciparum qPCR titer of ≥2 parasites/µL, LAMP sensitivity was 97.8% (95% confidence interval, 93.7%–99.5%). Most false-negative LAMP results involved samples with parasitemia levels detectable by 3-well nested PCR but very low or undetectable by qPCR.Conclusions. Malaria LAMP in a remote Ugandan clinic achieved sensitivity similar to that of single-well nested PCR in a United Kingdom reference laboratory. LAMP dramatically lowers the detection threshold achievable in malaria-endemic settings, providing a new tool for diagnosis, surveillance, and screening in elimination strategies.
BackgroundEarly and accurate diagnosis of malaria followed by prompt treatment reduces the risk of severe disease in malaria endemic regions. Presumptive treatment of malaria is widely practised where microscopy or rapid diagnostic tests (RDTs) are not readily available. With the introduction of artemisinin-based combination therapy (ACT) for treatment of malaria in many low-resource settings, there is need to target treatment to patients with parasitologically confirmed malaria in order to improve quality of care, reduce over consumption of anti-malarials, reduce drug pressure and in turn delay development and spread of drug resistance. This study evaluated the effect of malaria RDTs on health workers' anti-malarial drug (AMD) prescriptions among outpatients at low level health care facilities (LLHCF) within different malaria epidemiological settings in Uganda.MethodsAll health workers (HWs) in 21 selected intervention (where RDTs were deployed) LLHF were invited for training on the use RDTs. All HWs were trained to use RDTs for parasitological diagnosis of all suspected malaria cases irrespective of age. Five LLHCFs with clinical diagnosis (CD only) were included for comparison. Subsequently AMD prescriptions were compared using both a 'pre - post' and 'intervention - control' analysis designs. In-depth interviews of the HWs were conducted to explore any factors that influence AMD prescription practices.ResultsA total of 166,131 out-patient attendances (OPD) were evaluated at 21 intervention LLHCFs. Overall use of RDTs resulted in a 38% point reduction in AMD prescriptions. There was a two-fold reduction (RR 0.62, 95% CI 0.55-0.70) in AMD prescription with the greatest reduction in the hypo-endemic setting (RR 0.46 95% CI 0.51-0.53) but no significant change in the urban setting (RR1.01, p-value = 0.820). Over 90% of all eligible OPD patients were offered a test. An average of 30% (range 25%-35%) of the RDT-negative fever patients received AMD prescriptions. When the test result was negative, children under five years of age were two to three times more likely (OR 2.6 p-value <0.001) to receive anti-malarial prescriptions relative to older age group. Of the 63 HWs interviewed 92% believed that a positive RDT result confirmed malaria, while only 49% believed that a negative RDT result excluded malaria infection.ConclusionUse of RDTs resulted in a 2-fold reduction in anti-malarial drug prescription at LLHCFs. The study demonstrated that RDT use is feasible at LLHCFs, and can lead to better targetting of malaria treatment. Nationwide deployment of RDTs in a systematic manner should be prioritised in order to improve fever case management. The process should include plans to educate HWs about the utility of RDTs in order to maximize acceptance and uptake of the diagnostic tools and thereby leading to the benefits of parasitological diagnosis of malaria.
Quality health management requires timely and accurate data, and paper-based reporting does not fill this role adequately. The introduction of malaria rapid diagnostic tests and the availability of wireless communications present an opportunity to open direct data transmission and feedback between peripheral health workers and central managers. In November 2009, the Uganda Ministry of Health deployed a short message service–based reporting system in two districts. At a set-up cost of $100/health facility, local technician support of $ 400 per month, and a cost of $0.53/week/clinic, the SMS reporting system was started at more than 140 clinics. Positivity rates for rapid diagnostic tests and artemisinin combination therapy stock outs were 48% and 54% in Kabale and 71% and 54% in Gulu, among other reports, at more than 85% health facilities reporting weekly and without monetary incentives or additional supervision. The SMS-based reporting systems have potential to improve timeliness in reporting of specific, time-sensitive metrics at modest cost, while by-passing current bottlenecks in the flow of data. With the development of specific capacity to manage stock data at district level, the availability of timely data offers potential to address commodity distribution problems and reduce stock-outs.
BackgroundWhile feasibility of new health technologies in well-resourced healthcare settings is extensively documented, it is largely unknown in low-resourced settings. Uganda's decision to deploy and scale up malaria rapid diagnostic tests (mRDTs) in public health facilities and at the community level provides a useful entry point for documenting field experience, acceptance, and predictive variables for technology acceptance and use. These findings are important in informing implementation of new health technologies, plans, and budgets in low-resourced national disease control programmes.MethodsA cross-sectional qualitative descriptive study at 21 health centres in Uganda was undertaken in 2007 to elucidate the barriers and facilitators in the introduction of mRDTs as a new diagnostic technology at lower-level health facilities. Pre-tested interview questionnaires were administered through pre-structured patient exit interviews and semi-structured health worker interviews to gain an understanding of the response to this implementation. A conceptual framework on technology acceptance and use was adapted for this study and used to prepare the questionnaires. Thematic analysis was used to generate themes from the data.ResultsA total of 52 of 57 health workers (92%) reported a belief that a positive mRDT result was true, although only 41 of 57 (64%) believed that treatment with anti-malarials was justified for every positive mRDT case. Of the same health workers, only 49% believed that a negative mRDT result was truly negative. Factors linked to these findings were related to mRDT acceptance and use, including the design and characteristics of the device, availability and quality of mRDT ancillary supplies, health worker capacity to investigate febrile cases testing negative with the device and provide appropriate treatment, availability of effective malaria treatments, reliability of the health commodity supply chain, existing national policy recommendations, individual health worker dynamism, and vitality of supervision.ConclusionsmRDTs were found to be acceptable to and used by the target users, provided clear policy guidelines exist, ancillary tools are easy to use and health supplies beyond the diagnostic tools are met. Based on our results, health workers' needs for comprehensive case management should be met, and specific guidance for managing febrile patients with negative test outcomes should be provided alongside the new health technology. The extent, to which the implementation process of mRDT-led, parasite-based diagnosis accommodates end user beliefs, attitudes, perceptions, and satisfaction, as well as technology learnability and suitability, influences the level of acceptance and use of mRDTs. The effectiveness of the health system in providing the enabling environment and the integration of the diagnostic tool into routine service delivery is critical.
Increased attention to and funding for malaria promises to improve access to effective treatment, but Heidi Hopkins, Caroline Asiimwe, and David Bell argue that without diagnostic testing much of this effort will be wasted
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.