Background. Current malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too complex for field deployment. A new commercial molecular assay based on loop-mediated isothermal amplification (LAMP) was assessed for field use.Methods. Malaria LAMP (Eiken Chemical, Japan) was evaluated for samples from 272 outpatients at a rural Ugandan clinic and compared with expert microscopy, nested PCR, and quantitative PCR (qPCR). Two technicians performed the assay after 3 days of training, using 2 alternative blood sample–preparation methods and visual interpretation of results by fluorescence assay.Results. Compared with 3-well nested PCR, the sensitivity of both LAMP and single-well nested PCR was 90%; the microscopy sensitivity was 51%. For samples with a Plasmodium falciparum qPCR titer of ≥2 parasites/µL, LAMP sensitivity was 97.8% (95% confidence interval, 93.7%–99.5%). Most false-negative LAMP results involved samples with parasitemia levels detectable by 3-well nested PCR but very low or undetectable by qPCR.Conclusions. Malaria LAMP in a remote Ugandan clinic achieved sensitivity similar to that of single-well nested PCR in a United Kingdom reference laboratory. LAMP dramatically lowers the detection threshold achievable in malaria-endemic settings, providing a new tool for diagnosis, surveillance, and screening in elimination strategies.
Background: Parasite-based diagnosis of malaria by microscopy requires laboratory skills that are generally unavailable at peripheral health facilities. Rapid diagnostic tests (RDTs) require less expertise, but accuracy under operational conditions has not been fully evaluated in Uganda. There are also concerns about RDTs that use the antigen histidinerich protein 2 (HRP2) to detect Plasmodium falciparum, because this antigen can persist after effective treatment, giving false positive test results in the absence of infection. An assessment of the accuracy of Malaria Pf™ immunochromatographic test (ICT) and description of persistent antigenicity of HRP2 RDTs was undertaken in a hyperendemic area of Uganda.
BackgroundEarly and accurate diagnosis of malaria followed by prompt treatment reduces the risk of severe disease in malaria endemic regions. Presumptive treatment of malaria is widely practised where microscopy or rapid diagnostic tests (RDTs) are not readily available. With the introduction of artemisinin-based combination therapy (ACT) for treatment of malaria in many low-resource settings, there is need to target treatment to patients with parasitologically confirmed malaria in order to improve quality of care, reduce over consumption of anti-malarials, reduce drug pressure and in turn delay development and spread of drug resistance. This study evaluated the effect of malaria RDTs on health workers' anti-malarial drug (AMD) prescriptions among outpatients at low level health care facilities (LLHCF) within different malaria epidemiological settings in Uganda.MethodsAll health workers (HWs) in 21 selected intervention (where RDTs were deployed) LLHF were invited for training on the use RDTs. All HWs were trained to use RDTs for parasitological diagnosis of all suspected malaria cases irrespective of age. Five LLHCFs with clinical diagnosis (CD only) were included for comparison. Subsequently AMD prescriptions were compared using both a 'pre - post' and 'intervention - control' analysis designs. In-depth interviews of the HWs were conducted to explore any factors that influence AMD prescription practices.ResultsA total of 166,131 out-patient attendances (OPD) were evaluated at 21 intervention LLHCFs. Overall use of RDTs resulted in a 38% point reduction in AMD prescriptions. There was a two-fold reduction (RR 0.62, 95% CI 0.55-0.70) in AMD prescription with the greatest reduction in the hypo-endemic setting (RR 0.46 95% CI 0.51-0.53) but no significant change in the urban setting (RR1.01, p-value = 0.820). Over 90% of all eligible OPD patients were offered a test. An average of 30% (range 25%-35%) of the RDT-negative fever patients received AMD prescriptions. When the test result was negative, children under five years of age were two to three times more likely (OR 2.6 p-value <0.001) to receive anti-malarial prescriptions relative to older age group. Of the 63 HWs interviewed 92% believed that a positive RDT result confirmed malaria, while only 49% believed that a negative RDT result excluded malaria infection.ConclusionUse of RDTs resulted in a 2-fold reduction in anti-malarial drug prescription at LLHCFs. The study demonstrated that RDT use is feasible at LLHCFs, and can lead to better targetting of malaria treatment. Nationwide deployment of RDTs in a systematic manner should be prioritised in order to improve fever case management. The process should include plans to educate HWs about the utility of RDTs in order to maximize acceptance and uptake of the diagnostic tools and thereby leading to the benefits of parasitological diagnosis of malaria.
Objective To compare the effectiveness of oral quinine with that of artemether-lumefantrine in treating uncomplicated malaria in children.Design Randomised, open label effectiveness study. Setting Outpatient clinic of Uganda's national referral hospital in Kampala. Participants 175 children aged 6 to 59 months with uncomplicated malaria. Interventions Participants were randomised to receive oral quinine or artemether-lumefantrine administered by care givers at home. Main outcome measures Primary outcomes were parasitological cure rates after 28 days of follow-up unadjusted and adjusted by genotyping to distinguish recrudescence from new infections. Secondary outcomes were adherence to study drug, presence of gametocytes, recovery of haemoglobin concentration from baseline at day 28, and safety profiles. Results Using survival analysis the cure rate unadjusted by genotyping was 96% for the artemether-lumefantrine group compared with 64% for the quinine group (hazard ratio 10.7, 95% confidence interval 3.3 to 35.5, P=0.001). In the quinine group 69% (18/26) of parasitological failures were due to recrudescence compared with none in the artemether-lumefantrine group. The mean adherence to artemether-lumefantrine was 94.5% compared with 85
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.