BackgroundColombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species.Methodology/Principal FindingscDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory β-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the α-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the β-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both α and β NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups.Conclusions/SignificanceThis communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed.
The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared.
Viruses exhibit rapid mutational capacity to trick and infect host cells, sometimes assisted through virus-coded peptides that counteract host cellular immune defense. Although a large number of compounds have been identified as inhibiting various viral infections and disease progression, it is urgent to achieve the discovery of more effective agents. Furthermore, proportionally to the great variety of diseases caused by viruses, very few viral vaccines are available, and not all are efficient. Thus, new antiviral substances obtained from natural products have been prospected, including those derived from venomous animals. Venoms are complex mixtures of hundreds of molecules, mostly peptides, that present a large array of biological activities and evolved to putatively target the biochemical machinery of different pathogens or host cellular structures. In addition, non-venomous compounds, such as some body fluids of invertebrate organisms, exhibit antiviral activity. This review provides a panorama of peptides described from animal venoms that present antiviral activity, thereby reinforcing them as important tools for the development of new therapeutic drugs.
Arthropods are the most diverse animal group on the planet, and occupy almost all ecological niches. Venomous arthropods are a rich source of bioactive compounds evolved for prey capture and defense against predators and/or microorganisms. These highly potent chemical arsenals represent an available source for new insecticidal compounds as they act selectively on their molecular targets. These toxins affect the invertebrate nervous system and, until the moment, several insecticidal compounds belonging to the class of peptides or polyamine-like compounds have been purified and characterized from the venom of arachnids and hymenopterans. This review focuses on invertebrate-specific peptide neurotoxins that have been isolated from the venom ofspiders, scorpions, centipedes, ants, and wasps, discussing their potential in pest control and as invaluable tools in neuropharmacology.
In the present study we conducted proteomic and pharmacological characterizations of the venom extracted from the Brazilian tarantula Acanthoscurria paulensis, and evaluated the cardiotoxicity of its two main fractions. The molecular masses of the venom components were identified by mass spectrometry (MALDI-TOF-MS) after chromatographic separation (HPLC). The lethal dose (LD(50)) was determined in mice. Nociceptive behavior was evaluated by intradermal injection in mice and the edematogenic activity by the rat hind-paw assay. Cardiotoxic activity was evaluated on in situ frog heart and on isolated frog ventricle strip. From 60 chromatographic fractions, 97 distinct components were identified, with molecular masses between 601.4 and 21,932.3 Da. A trimodal molecular mass distribution was observed: 30% of the components within 500-1999 Da, 38% within 3500-5999 Da and 21% within 6500-7999 Da. The LD(50) in mice was 25.4 ± 2.4 μg/g and the effects observed were hypoactivity, anuria, constipation, dyspnea and prostration until death, which occurred at higher doses. Despite presenting a dose-dependent edematogenic activity in the rat hind-paw assay, the venom had no nociceptive activity in mice. Additionally, the venom induced a rapid blockage of electrical activity and subsequent diastolic arrest on in situ frog heart preparation, which was inhibited by pretreatment with atropine. In the electrically driven frog ventricle strip, the whole venom and its low molecular mass fraction, but not the proteic one, induced a negative inotropic effect that was also inhibited by atropine. These results suggest that despite low toxicity, A. paulensis venom can induce severe physiological disturbances in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.