Parallel continuum robots can provide compact, compliant manipulation of tools in robotic surgery and larger-scale human robot interaction. In this paper we address stiffness control of parallel continuum robots using a general nonlinear kinetostatic modeling framework based on Cosserat rods. We use a model formulation that estimates the applied end-effector force and pose using actuator force measurements. An integral control approach then modifies the commanded target position based on the desired stiffness behavior and the estimated force and position. We then use low-level position control of the actuators to achieve the modified target position. Experimental results show that after calibration of a single model parameter, the proposed approach achieves accurate stiffness control in various directions and poses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.