Abstract:The vast and ever-growing amount of agricultural and food wastes has become a major concern throughout the whole world. Therefore, strategies for their processing and value-added reuse are needed to enable a sustainable utilization of feedstocks and reduce the environmental burden. By-products of potato, tomato, cereals and olive arise in significant amounts in European countries and are consequently of high relevance. Due to their composition with various beneficial ingredients, the waste products can be valorized by different techniques leading to economic and environmental advantages. This paper focuses on the waste generation during industrial processing of potato, tomato, cereals and olives within the European Union and reviews state-of-the-art technologies for their valorization. Furthermore, current applications, future perspectives and challenges are discussed.
A high variety of plants that are used for food production contain esterified hydroxycinnamic acids. As their free forms display several benefits, like an enhanced absorption in human intestinal tract, anti-oxidative and anti-carcinogenic effects, an improved protein solubility and reduced discoloration, the microbial ability to cleave the ester bond is highly desired. In order to examine potential fermentation strains for this purpose, six different lactic acid bacteria and one bifidobacterial strain were screened for their ability to degrade esterified hydroxycinnamic acids because these strains are commonly used for fermentation of plant-based foods. Moreover, their cinnamoyl esterase activity was examined by molecular biological analyses. The enzymes were heterologously expressed in Escherichia coli, purified and biochemically characterized. The purified esterases with a molecular mass around 27-29 kDa had their optimum predominantly between pH 7 and 8 at 20-30 °C. Bifidobacterium animalis subsp. lactis, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus fermentum displayed activities against a broad substrate range (methyl caffeate, methyl trans-p-coumarate, chlorogenic acid as well as partially ethyl ferulate). Concerning substrate affinity, reaction velocity, thermal and pH stability, Lactobacillus gasseri showed the overall best performance. The herein studied lactic acid- and bifidobacteria are promising for the production of fermented plant-based foods with an increased quality and nutritional value.
This work contributes to the fundamental knowledge of the metabolism of lactic acid bacteria during fermentation of lupin substrates. Fermentation of lupin raw materials could be used to improve the nutritional value of the substrates due to the reduction of antinutritives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.