Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10–11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa.
AIMTo compare gut bacterial diversity and amount of Enterobacteriaceae in colonic mucosa between patients with and without diverticular disease (DD).METHODSPatients in a stable clinical condition with planned elective colonoscopy were included. Blood samples and colon mucosa biopsies were collected at the colonoscopy. Study questionnaires including questions about gastrointestinal symptoms were completed by the patients and physicians. DNA from mucosa samples was isolated and the amount of Enterobacteriaceae was estimated using PCR assay. Terminal restriction fragment length polymorphism was applied to assess microbial diversity. Diversity was estimated by calculations of richness (number of terminal restriction fragments) and Shannon-Wiener and Simpson’s indices.RESULTSA total of 51 patients were included, 16 patients with DD [68 (62-76) years] and 35 controls [62 (40-74) years] without any diverticula. Patients with DD had significantly higher levels of Enterobacteriaceae than those without DD (P = 0.043), and there was an inverse relationship between the amount of Enterobacteriaceae and the Simpson’s index (rs = -0.361, P = 0.033) and the Shannon-Wiener index (rs = -0.299, P = 0.081). The Simpson’s index (P = 0.383), Shannon-Wiener index (P = 0.401) or number of restrictions fragments (P = 0.776) did not differ between DD and controls. The majority of patients experienced gastrointestinal symptoms, and 22 patients (43.1%) fulfilled the criteria for irritable bowel syndrome, with no difference between the groups (P = 0.212). Demography, socioeconomic status, lifestyle habits, inflammatory biomarkers, or symptoms were not related to the amount of Enterobacteriaceae or bacterial diversity.CONCLUSIONPatients with DD had higher amount of Enterobacteriaceae in the colon mucosa compared to patients without diverticula.
Barley husks, rye bran, and a fiber residue from oat milk production were processed by heat pretreatment, various separation steps, and treatment with an endoxylanase in order to improve the prebiotic potential of these cereal byproducts. Metabolic functions were intended to improve along with improved microbial activity. The products obtained were included in a high-fat mouse diet so that all diets contained 5% dietary fiber. In addition, high-fat and low-fat controls as well as partially hydrolyzed guar gum were included in the study. The soluble fiber product obtained from rye bran caused a significant increase in the bifidobacteria (log copies of 16S rRNA genes; median (25-75 percentile): 6.38 (6.04-6.66) and 7.47 (7.30-7.74), respectively; p < 0.001) in parallel with a tendency of increased production of propionic acid and indications of improved metabolic function compared with high-fat fed control mice. The oat-derived product caused an increase in the pool of cecal propionic (from 0.62 ± 0.12 to 0.94 ± 0.08) and butyric acid (from 0.38 ± 0.04 to 0.60 ± 0.04) compared with the high-fat control, and it caused a significant increase in lactobacilli (log copies of 16S rRNA genes; median (25-75 percentile): 6.83 (6.65-7.53) and 8.04 (7.86-8.33), respectively; p < 0.01) in the cecal mucosa. However, no changes in measured metabolic parameters were observed by either oat or barley products.
Green-plant thylakoids increase satiety by affecting appetite hormones such as ghrelin, cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1). The objective of this study was to investigate if thylakoids also affect gastrointestinal (GI) passage and microbial composition. To analyse the effects on GI passage, 16 rats were gavage-fed a control or thylakoid-supplemented high-fat diet (HFD) 30 min before receiving Evans blue. Another 16 rats were fed a control HFD or thylakoid HFD for two weeks prior to the intragastric challenge with Evans blue. The amount of Evans blue in the stomach and the distance of migration in the intestines after 30 min were used as a measurement of gastric emptying and intestinal transit. These were reduced by thylakoid supplementation in the acute study, and however not significantly also after the two-week diet study.The second aim of the study was to investigate if thylakoid-supplementation affects the gut microbiota and amount of faecal fat in healthy human volunteers (n = 34) receiving thylakoid or placebo treatments for three months. Microbiota was analysed using 16S rRNA gene sequencing and qPCR, and faecal fat was extracted by dichloromethane. The total bacteria, and specifically the Bacteriodes fragilis group, were increased by thylakoid treatment versus placebo, while thylakoids did not cause steatorrhea. Dietary supplementation with thylakoids thus affects satiety both via appetite hormones and GI fullness, and affects the microbial composition without causing GI adverse effects such as steatorrhea. This suggests thylakoids as a novel agent in prevention and treatment of obesity.
BackgroundThe gonadotropin-releasing hormone (GnRH) analog buserelin causes enteric neuronal loss. Acute stress or injection of corticotropin-releasing factor (CRF) affects motility, secretion, and barrier function of the gastrointestinal tract. The aim of the study was to characterize the CRF immunoreactivity in enteric neurons after buserelin treatment, and to evaluate possible effects of enteric neuropathy on gut microbiota, intestinal permeability, and stress response behavior.ResultsSixty rats were given buserelin (20 μg) or saline subcutaneously for 5 days, repeated four times with 3 weeks in-between. At the study end, enteric neuronal density, enteric expression of CRF, gut microbial composition, and plasma levels of adrenocorticotropic hormone (ACTH) and CRF were analyzed. Intestinal permeability was examined in Ussing chambers and the reaction to stressful events was measured by behavior tests. Buserelin treatment reduced the number of neurons along the entire gastrointestinal tract, with increased relative numbers of CRF-immunoreactive submucosal and myenteric neurons in colon (p < 0.05 and p < 0.01, respectively). The overall microbial diversity and relative abundance did not differ between groups, but Enterobacteriaceae was decreased in colon in buserelin-treated rats (p = 0.020). Basal intestinal permeability did not differ between groups, whereas carbachol stimulation increased ileum permeability in controls (p < 0.05), but not in buserelin-treated rats. Buserelin did not affect stress behavior.ConclusionsAlthough buserelin treatment leads to enteric neuronal loss along the gastrointestinal tract with an increased percentage of CRF-immunoreactive neurons in colon, the physiology is well preserved, with modest effects on colon microbiota and absence of carbachol-induced permeability in ileum as the only observed changes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-015-1800-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.