The negative effects of fructose due to its chronic consumption are well documented, while short‐term application of fructose is found to protect different types of cells against oxidative stress. Reactive oxygen species (ROS) are suggested to mediate both the cytotoxic and defensive effects. Here, we compare the influence of glucose and fructose on yeast under H2O2‐induced stress. Under control conditions, fructose‐grown comparing with glucose‐grown yeast demonstrated higher metabolic activity and ROS level. Therefore, fructose was suggested to provoke a mild stress that resulted in the acquisition of cellular resistance to lethal challenges, which explained the higher survival of fructose‐grown yeast under H2O2‐induced shock. Exposure to H2O2 increased ROS level in glucose‐grown cells, whereas it decreased the ROS level in fructose‐grown cells. Hydrogen peroxide activated superoxide dismutase (SOD) and catalase in both the cell types studied, but glucose‐grown cells demonstrated a sharp rise of the activities, while cells grown on fructose showed a broad peak of activation. Thus, fructose is likely to protect the antioxidant enzymes against their inactivation by H2O2. Despite a different type of the enzyme activation in both the studied cell types (glucose‐ and fructose‐grown), a strong positive correlation between SOD and catalase was found. The physiological meaning of this relationship and possible mechanisms of the fructose protective effect are discussed.
New Findings r What is the central question of this study?
Does the exocrine pancreas have an impact on endocrine pancreatic function and peripheral nutrient utilization? r What is the main finding and its importance?In an exocrine pancreas-insufficient pig model, the insulin response to a glucose load was delayed. Oral enzyme supplementation did not improve the insulin release but facilitated blood glucose clearance. These results suggest an acino-insular axis communication affecting islet function and an impact of gut pancreatic enzymes on blood glucose utilization.The effect of exocrine pancreatic function on the glucose-mediated insulin response and glucose utilization were studied in an exocrine pancreas-insufficient (EPI) pig model. Five 10-week-old EPI pigs after pancreatic duct ligation and 6 age-matched, non-operated control pigs were used in the study. Blood glucose, plasma insulin and C-peptide concentrations were monitored during meal (MGTT), oral (OGTT) and intravenous (IVGTT) glucose tolerance tests. Upon post-mortem examination, the pancreatic remnants of the EPI pigs showed acinar fibrotic atrophy but normal islets and β-cell morphology. The EPI pigs displayed increased fasting glucose concentrations compared with control animals (6.4 ± 0.4 versus 4.8 ± 0.1 mmol l −1 , P < 0.0001) but unchanged insulin concentrations (2.4 ± 0.6 versus 2.1 ± 0.2 pmol l
An elevated level of serum uric acid—hyperuricemia, is strongly associated with the development of gout and chronic kidney disease (CKD) which is often accompanied by a significantly reduced glomerular filtration rate (GFR). In the present study, we investigated the extra-renal elimination of uric acid via the intestine in a healthy pig model and the effect of oral uricase therapy on plasma uric acid concentrations in pigs with induced hyperuricemia and CKD. The experiment was conducted on eleven, ten-week-old pigs (n = 11). The porcine model of CKD was developed by performing 9/10 nephrectomy surgery on eight pigs. A stable model of hyperuricemia was established in only five of the eight nephrectomized pigs by frequent injections of uric acid (UA) into the jugular vein. All pigs (three healthy pigs and five CKD pigs) were operated for implantation of jugular vein catheters and the three healthy pigs also had portal vein catheters inserted. Blood uric acid concentrations were measured spectrophotometrically, using the Uric Acid Assay Kit (BioAssay Systems, Hayward, USA). The piglets with CKD received orally administered uricase (treatment) and served as their own controls (without uricase supplementation). Oral uricase therapy significantly decreased plasma uric acid concentrations in pigs with CKD, whereas hyperuricemia was observed in the pigs whilst not being treated with uricase. Urinary uric acid excretion was similar during both the treatment and control periods during the first 8 h and 24 h after UA infusions in the CKD pigs. To demonstrate the elimination of UA via the intestine, the healthy pigs were infused with UA into the jugular vein. The blood collected from the jugular vein represents circulating UA concentrations and the blood collected from the portal vein represents the concentration of UA leaving the intestine. The final (after 2 h) concentration of UA was significantly lower in blood collected from the portal vein compared to that collected from the jugular vein (3.34 vs. 2.43 mg/dL, respectively, p = 0.024). The latter allows us to suggest that UA is eliminated from the blood via the gut tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.