SummaryThe anti-tumour drug treosulfan (L-threitol 1,4-bismethanesulphonate, Ovastat) is a prodrug for epoxy compounds by converting non-enzymatically to L-diepoxybutane via the corresponding monoepoxide under physiological conditions. The present study supports the hypothesis that this conversion of treosulfan is required for cytotoxicity in vitro. DNA alkylation and interstrand cross-linking of plasmid DNA is observed after treosulfan treatment, but this is again produced via the epoxide species. Alkylation occurs at guanine bases with a sequence selectivity similar to other alkylating agents such as the nitrogen mustards. In treosulfan-treated K562 cells, cross-links form slowly, reaching a peak at approximately 24 h. Incubation of K562 cells with preformed epoxides shows faster and more efficient DNA cross-linking.
Many genes involved in cell cycle control have promoters that bind the heterotrimeric transcription factor NF-Y. Several minor-groove binding drugs have been shown to block interactions of transcription factors with cognate DNA-binding sequences. We showed previously that noncovalent minor-groove binding agents block interactions of NF-Y with the promoter of topoisomerase IIA (topo IIA). In this study, we investigated the ability of GWL-78, a pyrrolobenzodiazepine-poly(N-methylpyrrole) conjugate, to inhibit the binding of NF-Y to DNA. Electrophoretic mobility shift assays showed that GWL-78 could displace NF-Y bound to several CCAAT motifs within promoters of genes involved in cell cycle progression. DNase I footprinting of the topo IIA promoter confirmed binding of GWL-78 to AT-rich sequences corresponding to the preferred binding site of NF-Y. Incubation with GWL-78 resulted in displacement of NF-Y binding to DNA. Chromatin immunoprecipitation assays on the topo IIA promoter showed that GWL-78 was able to enter the nucleus and interact with specific DNA sequences. Treatment of NIH3T3 cells with GWL-78 resulted in a block of cell cycle progression, which did not involve activation of p53. Thus, agents such as GWL-78 may be useful in modulating transcription and blocking cellular proliferation.
The polyamide f-ImPyIm has a higher affinity for its cognate DNA than either the parent analogue, distamycin A (10-fold), or the structural isomer, f-PyImIm (250-fold), has for its respective cognate DNA sequence. These findings have led to the formulation of a two-letter polyamide "language" in which the -ImPy- central pairings associate more strongly with Watson-Crick DNA than -PyPy-, -PyIm-, and -ImIm-. Herein, we further characterize f-ImPyIm and f-PyImIm, and we report thermodynamic and structural differences between -ImPy- (f-ImPyIm) and -PyIm- (f-PyImIm) central pairings. DNase I footprinting studies confirmed that f-ImPyIm is a stronger binder than distamycin A and f-PyImIm and that f-ImPyIm preferentially binds CGCG over multiple competing sequences. The difference in the binding of f-ImPyIm and f-PyImIm to their cognate sequences was supported by the Na(+)-dependent nature of DNA melting studies, in which significantly higher Na(+) concentrations were needed to match the ability of f-ImPyIm to stabilize CGCG with that of f-PyImIm stabilizing CCGG. The selectivity of f-ImPyIm beyond the four-base CGCG recognition site was tested by circular dichroism and isothermal titration microcalorimetry, which shows that f-ImPyIm has marginal selectivity for (A.T)CGCG(A.T) over (G.C)CGCG(G.C). In addition, changes adjacent to this 6 bp binding site do not affect f-ImPyIm affinity. Calorimetric studies revealed that binding of f-ImPyIm, f-PyImIm, and distamycin A to their respective hairpin cognate sequences is exothermic; however, changes in enthalpy, entropy, and heat capacity (DeltaC(p)) contribute differently to formation of the 2:1 complexes for each triamide. Experimental and theoretical determinations of DeltaC(p) for binding of f-ImPyIm to CGCG were in good agreement (-142 and -177 cal mol(-)(1) K(-)(1), respectively). (1)H NMR of f-ImPyIm and f-PyImIm complexed with their respective cognate DNAs confirmed positively cooperative formation of distinct 2:1 complexes. The NMR results also showed that these triamides bind in the DNA minor groove and that the oligonucleotide retains the B-form conformation. Using minimal distance restraints from the NMR experiments, molecular modeling and dynamics were used to illustrate the structural complementarity between f-ImPyIm and CGCG. Collectively, the NMR and ITC experiments show that formation of the 2:1 f-ImPyIm-CGCG complex achieves a structure more ordered and more thermodynamically favored than the structure of the 2:1 f-PyImIm-CCGG complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.