Many genes involved in cell cycle control have promoters that bind the heterotrimeric transcription factor NF-Y. Several minor-groove binding drugs have been shown to block interactions of transcription factors with cognate DNA-binding sequences. We showed previously that noncovalent minor-groove binding agents block interactions of NF-Y with the promoter of topoisomerase IIA (topo IIA). In this study, we investigated the ability of GWL-78, a pyrrolobenzodiazepine-poly(N-methylpyrrole) conjugate, to inhibit the binding of NF-Y to DNA. Electrophoretic mobility shift assays showed that GWL-78 could displace NF-Y bound to several CCAAT motifs within promoters of genes involved in cell cycle progression. DNase I footprinting of the topo IIA promoter confirmed binding of GWL-78 to AT-rich sequences corresponding to the preferred binding site of NF-Y. Incubation with GWL-78 resulted in displacement of NF-Y binding to DNA. Chromatin immunoprecipitation assays on the topo IIA promoter showed that GWL-78 was able to enter the nucleus and interact with specific DNA sequences. Treatment of NIH3T3 cells with GWL-78 resulted in a block of cell cycle progression, which did not involve activation of p53. Thus, agents such as GWL-78 may be useful in modulating transcription and blocking cellular proliferation.
Topoisomerase IIA (topo IIa) is an important target for several chemotherapeutic agents, including etoposide and doxorubicin. Confluent cells express low levels of topo IIa and are resistant to etoposide treatment. Repression of transcription in confluent cells is mediated by binding of the transcription factor NF-Y to inverted CCAAT motifs within the topo IIa promoter. To block the repressive binding of NF-Y, a polyamide (JH-37) was designed to bind to the flanking regions of selected CCAAT sites within the topo IIa promoter. Electrophoretic mobility shift assays and DNase I footprinting assays showed occupancy of the inverted CCAAT sites by JH-37. Chromatin immunoprecipitation assays confirmed in vivo inhibition of NF-Y binding to the topo IIa promoter. Following incubation of confluent NIH3T3 cells with JH-37, increased expression of topo IIa mRNA and protein was detectable. This correlated both with increased DNA double-strand breaks as shown by comet assay and decreased cell viability following exposure to etoposide. Polyamides can modulate gene expression and chemosensitivity of cancer cells.
The binding of nuclear factor Y (NF-Y) to inverted CCAAT boxes (ICBs) within the promoter region of DNA topoisomerase IIα results in control of cell differentiation and cell cycle progression. Thus, NF-Y inhibitory small molecules could be employed to inhibit the replication of cancer cells. A library of pyrrolobenzodiazepine (PBD) C8-conjugates consisting of one PBD unit attached to tri-heterocyclic polyamide fragments was designed and synthesized. The DNA-binding affinity and sequence selectivity of each compound were evaluated in DNA thermal denaturation and DNase I footprinting assays, and the ability to inhibit binding of NF-Y to ICB1 and ICB2 was studied using an electrophoretic mobility shift assay (EMSA). 3a was found to be a potent inhibitor of NF-Y binding, exhibiting a 10-fold selectivity for an ICB2 site compared to an ICB1-containing sequence, and showing low nanomolar cytotoxicity toward human tumor cell lines. Molecular modeling and computational studies have provided details of the covalent attachment process that leads to formation of the PBD-DNA adduct, and have allowed the preference of 3a for ICB2 to be rationalized.
The topoisomerase IIalpha promoter is regulated through transcription factor interactions with five inverted CCAAT boxes (ICBs). In confluent cancer cells, binding of nuclear factor Y to ICB2 represses the expression of this gene, contributing to resistance to topoisomerase II poisons. The ICB sites within the topoisomerase IIalpha promoter are, therefore, potential targets for the design of anticancer drugs and gene control agents. The synthesis and DNA binding properties of a hairpin polyamide molecule (JH-37) that targets 5'-TTGGT-3' found in ICB2 and ICB3 sites are described. Gel shift and DNase I footprinting studies on the topoisomerase IIalpha promoter showed JH-37 to preferentially bind to ICB2,3 and ICB1 sites. The larger DeltaT(M) values for ICB2,3 (8-9 degrees C) over ICB1,4,5 (4-5 degrees C) indicated a preference of JH-37 for ICB2,3. CD titration studies confirmed the binding of JH-37 to the minor groove, with a 1:1 binding stoichiometry. Results from SPR studies showed JH-37 to bind most strongly to ICB2 (K = 3 x 10(7) M(-1)), followed by ICB1, the non-ICB sequence (TGCA), and finally the ICB mutant (ICB2m). The improved binding to ICB2 is largely due to a lower dissociation rate of the compound at the preferred site. To our knowledge, this is the first example on the use of SPR for studying the interactions of hairpin polyamides with DNA. Binding of JH-37 to ICB2 was corroborated by ITC studies, in which the DeltaG degrees of binding is driven by both enthalpy and entropy. With knowledge of the fundamental thermodynamic and kinetic properties that govern the molecular recognition of polyamides with DNA, we are poised to systematically edit the structure of JH-37 in order to further enhance its binding affinity and selectivity for ICB2,3. Our strategy for designing molecules that control gene expression is to target shorter, but multiple, binding sites that are in close array within the promoter. Binding of JH-37 to multiple ICB sites in the topoisomerase IIalpha promoter is an ideal test for this strategy. This approach is in contrast to the traditional strategy of targeting 15-16 base pairs, which has not been successful in actual biological systems due to poor cell uptake and distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.