PurposeMorphology alone is not enough for the selection of the embryo (s) with the highest implantation potential and time-lapse imaging has added embryo development kinetics as another selection criterion. Therefore, a combination of morphology with kinetics has inspired a new field termed “morphokinetics”, providing a new way of evaluating and selecting embryos. The aim of the study was to identify a criterion solely based on morphokinetic data and available up to the 8-cell stage (t8) to predict blastocyst formation and quality.MethodsThe study included 3,354 embryos, with annotations up to t8, and cultured until day 5 from 626 infertile patients. A total of 17 kinetic expressions, either absolute cleavage timings and time intervals or time ratios were tested retrospectively for the prediction of blastocyst formation and quality.ResultsRelative timings (t8-t5, the cleavage synchronicity from 4 to 8 cells and from 2 to 8 cells) were found to be better indicators of blastocyst formation and quality when compared to absolute time-points. Especially, the cleavage synchronicity from 2 to 8 cells (CS2-8) = ((t3-t2) + (t5-t4))/(t8-t2)) was found to be the best predictor available on day 3 for blastocyst formation and quality (AUC:0.786; sensitivity: 83.43; specificity: 62.46).ConclusionsTime intervals and relative ratios based on selected cleavage cycles defining synchronicity allowed a specific analysis providing high predictivity of blastocyst formation and quality.Electronic supplementary materialThe online version of this article (doi:10.1007/s10815-014-0341-x) contains supplementary material, which is available to authorized users.
The aim of this study is to compare blastocyst development and cycle outcomes of good prognosis elective single embryo transfer patients using conventional or time lapse incubators. A randomized study was designed to evaluate embryo development until the blastocyst stage in either conventional or time-lapse incubators in good prognosis patients. Furthermore cycle outcomes of the patients were evaluated. The study involved 64 patients (33 for time-lapse and 31 for conventional incubation) in their first or second treatment cycle, with no recurrent spontaneous miscarriages, age<35 years, body mass index <28 kg/m2 and ≥8 oocytes retrieved. The primary outcome was the proportion of good and top quality blastocysts on day 5 and the secondary outcome was the implantation and pregnancy rates after elective single embryo transfer in good prognosis patients. The analysis performed revealed no statistical difference between both groups for blastocyst development, implantation and clinical pregnancy rates. In a selected good prognosis elective single embryo transfer population, similar rates of good and top quality blastocysts and comparable implantation and pregnancy rates were achieved. However, the stable culture conditions provided by time-lapse incubators and the use of morphokinetic parameters may allow the selection of the best available embryos with high developmental capacity, especially in poor prognosis patients.
Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been identified in families with autosomal dominant Parkinson's disease (PD) and in sporadic cases; the G2019S mutation is the single most frequent. Intriguingly, the frequency of this mutation in PD patients varies greatly among ethnic groups and geographic origins: it is present at <0.1% in East Asia, approximately 2% in European-descent patients and can reach frequencies of up to 15-40% in PD Ashkenazi Jews and North African Arabs. To ascertain the evolutionary dynamics of the G2019S mutation in different populations, we genotyped 74 markers spanning a 16 Mb genomic region around G2019S, in 191 individuals carrying the mutation from 126 families of different origins. Sixty-seven families were of North-African Arab origin, 18 were of North/Western European descent, 37 were of Jewish origin, mostly from Eastern Europe, one was from Japan, one from Turkey and two were of mixed origins. We found the G2019S mutation on three different haplotypes. Network analyses of the three carrier haplotypes showed that G2019S arose independently at least twice in humans. In addition, the population distribution of the intra-allelic diversity of the most widespread carrier haplotype, together with estimations of the age of G2019S determined by two different methods, suggests that one of the founding G2019S mutational events occurred in the Near East at least 4000 years ago.
Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component α-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3′-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction.
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. A progressive movement disorder typified by the production of bradykinesia, tremor, rigidity, and impairment of postural reflexes, PD is characterized by a depletion of dopamine in the striatum. For the last decade, several Mendelian forms of PD have been identified. Mutations in these genes potentially lead to autosomal dominant (a-synuclein and LRRK2), or autosomal recessive PD (Parkin, PINK1, DJ1, and ATP13A2). This article will spotlight these six distinct genes unambiguously associated with Mendelian PD and the function of their encoded proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.