The widespread production of fermented food and beverages has resulted in the domestication of Saccharomyces cerevisiae yeasts specifically adapted to beer production. While there is evidence beer yeast domestication was accelerated by industrialization of beer, there also exists a farmhouse brewing culture in western Norway which has passed down yeasts referred to as kveik for generations. This practice has resulted in ale yeasts which are typically highly flocculant, phenolic off flavor negative (POF-), and exhibit a high rate of fermentation, similar to previously characterized lineages of domesticated yeast. Additionally, kveik yeasts are reportedly high-temperature tolerant, likely due to the traditional practice of pitching yeast into warm (>28°C) wort. Here, we characterize kveik yeasts from 9 different Norwegian sources via PCR fingerprinting, whole genome sequencing of selected strains, phenotypic screens, and lab-scale fermentations. Phylogenetic analysis suggests that kveik yeasts form a distinct group among beer yeasts. Additionally, we identify a novel POF- loss-of-function mutation, as well as SNPs and CNVs potentially relevant to the thermotolerance, high ethanol tolerance, and high fermentation rate phenotypes of kveik strains. We also identify domestication markers related to flocculation in kveik. Taken together, the results suggest that Norwegian kveik yeasts are a genetically distinct group of domesticated beer yeasts with properties highly relevant to the brewing sector.
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the “Beer 1” clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
In recent years, Brettanomyces bruxellensis has found increasing application in brewery fermentations. Indeed, B. bruxellensis contributes to the flavour profile of many Belgian beers, typically during secondary or spontaneous fermentation. In North America, the yeast is used in primary fermentation to produce beers with ‘Brett’ characteristics with ‘fruity’ and/or ‘funky’ sensory profiles associated with the production of volatile esters and phenols. However, little is understood about the factors that influence flavour metabolite production or fermentation rate in this yeast. Here, the impact of temperature is reported on fermentation efficiency, flavour metabolite production and carbon utilisation of one commonly used and eight poorly characterised B. bruxellensis strains during wort fermentation. A high degree of strain and temperature‐dependent variability was found in fermentation efficiency and metabolite production amongst B. bruxellensis strains. Further, fermentation efficiency and carbon utilisation were temperature dependent, while ester production increased at higher temperature and phenol production was strain and temperature independent. These results indicate significant strain and temperature dependent variation, suggesting the potential application of strain variability as a tool to achieve product diversity in B. bruxellensis primary fermentations. © 2019 The Institute of Brewing & Distilling
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavour metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the Beer 1 clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, its range of fermentation temperatures and corresponding flavour metabolites produced, remain uncharacterized. In addition, the characteristics responsible for its increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance, flavour metabolite production and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to its increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Human activity has resulted in the domestication of Saccharomyces cerevisiae yeasts specifically adapted to beer production. While there is evidence beer yeast domestication was accelerated by industrialization of beer, there also exists a home-brewing culture in western Norway which has passed down yeasts referred to as kveik for generations. This practice has resulted in ale yeasts which are typically highly flocculant, phenolic off flavour negative (POF-), and exhibit a high rate of fermentation, similar to previously characterized lineages of domesticated yeast. Additionally, kveik yeasts are highly temperature tolerant, likely due to the traditional practice of pitching yeast into warm (>30 °C) wort. Here, we characterize kveik yeasts from 9 different Norwegian sources via PCR fingerprinting, phenotypic screens, lab-scale fermentations, and flavour metabolite analysis using HS-SPME-GC-MS. Genetic fingerprinting via interdelta PCR suggests that kveik yeasts form a lineage distinct from other domesticated yeasts. Our analyses confirm that kveik yeasts display hallmarks of domestication such as loss of 4-vinylguaiacol production and high flocculation, and show superior thermotolerance, ethanol tolerance, fermentation rate, and unique flavour metabolite production profiles in comparison to other ale strains, suggesting a broad industrial potential for this group of yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.