Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the “Beer 1” clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavour metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the Beer 1 clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, its range of fermentation temperatures and corresponding flavour metabolites produced, remain uncharacterized. In addition, the characteristics responsible for its increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance, flavour metabolite production and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to its increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
The green shield bug, Palomena prasina (Hemiptera: Pentatomidae), is a pest of deciduous trees and shrubs throughout Turkey and is found in a large variety of habitats, including gardens. We investigated the facultative cultivable bacterial flora of 10 healthy and 5 dead green shield bugs, collected from the vicinity of Trabzon, Turkey, and tested them for insecticidal activity. Based on the conventional and molecular tests, 12 different bacteria were isolated and identified as Curtobacterium sp., Rhodococcus sp., Arthrobacter nicotinovorans, Arthrobacter oxydans, Agrococcus jejuensis, Pseudomonas poae, Raoultella terrigena, Serratia sp., Lysinibacillus sphaericus, Stenotrophomonas rhizophila, Bacillus thuringiensis and Microbacterium oxydans. Mortalities due to the application of 0.5 mL of L. sphaericus, B. thuringiensis and R. terrigena at a density of OD 600 1.89 were 60%, 70% and 60%, respectively, on adult P. prasina. This indicates that facultative cultivable bacterial flora isolated from P. prasina have potential for microbial control of this pest.
Chilo iridescent virus (CIV), officially named invertebrate iridescent virus 6 (IIV6), is a nucleocytoplasmic virus with a ~212-kb linear dsDNA genome that encodes 215 putative open reading frames (ORFs). Proteomic analysis has revealed that the CIV virion consists of 54 virally encoded proteins. In this study, we identified the interactions between the structural proteins using the yeast two-hybrid system. We cloned 47 structural genes into both bait and prey vectors, and then analysed the interactions in Saccharomyces cerevisiae strain AH109. A total of 159 protein-protein interactions were detected between the CIV structural proteins. Only ORF 179R showed a self-association. Four structural proteins that have homologues in iridoviruses (118L, 142R, 274L and 295L) showed indirect interactions with each other. Seven proteins (138R, 142R, 361L, 378R, 395R, 415R and 453R) interacted with the major capsid protein 274L. The putative membrane protein 118L, a homologue of the frog virus 3/Ranagrylio virus 53R protein, showed direct interactions with nine other proteins (117L, 229L, 307L, 355R, 366R, 374R, 378R, 415R and 422L). The interaction between 118L and 415R was confirmed by a GST pull-down assay. These data indicate that 415R is a potential matrix protein connecting the envelope protein 118L with the major capsid protein 274L.
Objectives: Lipolytic genes have been investigated in several viral genomes, and some of them show enzyme activity which can be used for various functions including the production of DNA replication metabolites, rescue from endosomes, and membrane fusion. Amsacta moorei entomopoxvirus (AMEV) replicates in nearly the entire insect body, especially in the adipose tissue. One of the open reading frames (ORFs) in the AMEV genome, amv133, encodes a putative lipase enzyme. In this study, we therefore investigate the enzyme activity of amv133. Methods:amv133 was aligned with known lipase genes and their homologs in entomopoxviruses. Expressed proteins were partially purified and assayed for lipase, esterase and protease. Results: We found that amv133 contains all the domains required for a functional lipase enzyme and that it shows a significant similarity with homologs in other entomopoxviruses. Since there is a similarity of the catalytic triad between lipases and serine proteases, we also investigated the protease activity of amv133. Lipase, esterase and protease assays showed that amv133 encodes a functional esterase enzyme with protease activity. Conclusion: The current data show that amv133 is a conserved gene in all entomopoxvirus genomes sequenced so far and might contribute greatly to degrading the lipids or proteins and hence improve the virus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.