Increased esophageal sensitivity and impaired mucosal integrity have both been described in patients with gastroesophageal reflux disease, but the relationship between hypersensitivity and mucosal integrity is unclear. The aim of the present study was to investigate acid sensitivity in patients with erosive and nonerosive reflux disease and control subjects to determine the relation with functional esophageal mucosal integrity changes as well as to investigate cellular mechanisms of impaired mucosal integrity in these patients. In this prospective experimental study, 12 patients with nonerosive reflux disease, 12 patients with esophagitis grade A or B, and 11 healthy control subjects underwent an acid perfusion test and upper endoscopy. Mucosal integrity was measured during endoscopy by electrical tissue impedance spectroscopy and biopsy specimens were analyzed in Ussing chambers for transepithelial electrical resistance, transepithelial permeability and gene expression of tight junction proteins and filaggrin. Patients with nonerosive reflux disease and esophagitis were more sensitive to acid perfusion compared with control subjects, having a shorter time to perception of heartburn and higher perceived intensity of heartburn. In reflux patients, enhanced acid sensitivity was associated with impairment of in vivo and vitro esophageal mucosal integrity. Mucosal integrity was significantly impaired in patients with esophagitis, displaying higher transepithelial permeability and lower extracellular impedance. Although no significant differences in the expression of tight junction proteins were found in biopsies among patient groups, mucosal integrity parameters in reflux patients correlated negatively with the expression of filaggrin. In conclusion, sensitivity to acid is enhanced in patients with gastroesophageal reflux disease, irrespective of the presence of erosions, and is associated with impaired esophageal mucosal integrity. Mucosal integrity of the esophagus is associated with the expression of filaggrin.
In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production.
Intestinal epithelial cells (IECs) are integral players in homeostasis of immunity and host defense in the gut and are under influence of the intestinal microbiome. Microbial metabolites and dietary components, including short chain fatty acids (acetate, propionate, and butyrate, SCFAs), have an impact on the physiology of IECs at multiple levels, including the inhibition of deacetylases affecting chromatin remodeling and global changes in transcriptional activity. The number and diversity of butyrate-producing bacteria is subject to factors related to age, disease, and to diet. At physiological levels, SCFAs are inhibitors of histone deacetylases (HDACs) which may explain the transcriptional effects of SCFAs on epithelial cells, although many effects of SCFAs on colonic mucosa can be ascribed to mechanisms beyond HDAC inhibition. Interference with this type of post-translational modification has great potential in cancer and different inflammatory diseases, because HDAC inhibition has anti-proliferative and anti-inflammatory effects in vitro, and in in vivo models of intestinal inflammation. Hence, the influence of dietary modulators on HDAC activity in epithelia is likely to be an important determinant of its responses to inflammatory and microbial challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.